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Resumo

Aprendizado multitarefa tem como objetivo melhorar a capacidade de generalização
por meio do aprendizado simultâneo de múltiplas tarefas relacionadas. Por tarefa
entende-se o treinamento de modelos de regressão e classificação, por exemplo. Este
aprendizado conjunto é composto de uma representação compartilhada entre as tare-
fas que permite explorar potenciais similaridades elas. No entanto, utilizar infor-
mações de tarefas não relacionadas tem se mostrado prejudicial em diversos cenários.
Sendo assim, é fundamental a identificação da estrutura de relacionamento entre as
tarefas para que seja posśıvel controlar de forma apropriada a troca de informações
entre tarefas relacionadas e isolar tarefas independentes. Nesta tese, é proposta uma
famı́lia de algoritmos de aprendizado multitarefa, baseada em modelos Bayesianos
hierárquicos, aplicáveis a problemas de classificação e regressão, capazes de estimar,
a partir dos dados, a estrutura de relacionamento entre as tarefas e incorporá-la
no aprendizado dos parâmetros espećıficos de cada modelo. O grafo representando
o relacionamento entre tarefas é fundamentado em avanços recentes em modelos
gráficos gaussianos equipados com estimadores esparsos da matriz de precisão (in-
versa da matriz de covariância). Uma extensão que utiliza modelos baseados em
cópulas gaussianas semiparamétricas também é proposto. Estes modelos relaxam as
suposições de marginais gaussianas e correlação linear inerentes em modelos gráfi-
cos gaussianos multivariados. A eficiência dos métodos propostos é demonstrada no
problema de combinação de modelos climáticos globais para projeção do comporta-
mento futuro de certas variáveis climáticas, com foco em temperatura e precipitação
para as regiões da América do Sul e do Norte. O relacionamento entre as tarefas es-
timado se mostrou consistente com o conhecimento de domı́nio do problema. Além
disso, foram realizados experimentos em uma variedade de problemas de classifi-
cação provenientes de diferentes domı́nios, incluindo problemas de classificação com
múltiplos rótulos.

Palavras-chave: Aprendizado multitarefa, Combinação de Modelos Climáticos Globais,
Modelos Esparsos, Aprendizado de Estrutura, Modelos Gráficos Probabiĺısticos.



Abstract

Multitask learning aims to improve generalization performance by learning multiple
related tasks simultaneously. The joint learning is endowed with a shared represen-
tation that encourages information sharing and allows exploiting potential common-
alities among tasks. However, sharing information with unrelated tasks has shown
to be detrimental to the performance. Therefore, a fundamental step is to identify
the true task relationships to properly control the sharing among related tasks while
avoiding using information from unrelated ones. In this thesis, we present a family
of methods for multitask learning based on hierarchical Bayesian models, applicable
to regression and classification problems, capable of learning the structure of task
relationships from the data. In particular, we consider a joint estimation problem
of the task relationships and the individual task parameters, which is solved using
alternating minimization. The task relationship revealed by structure learning is
founded on recent advances in Gaussian graphical models endowed with sparse esti-
mators of the precision (inverse covariance) matrix. An extension to include flexible
semi-parametric Gaussian copula models that relaxes both the Gaussian marginal
assumption and its linear correlation is also developed. We demonstrate the ef-
fectiveness of the proposed family of models on the problem of combining Earth
System Model (ESM) outputs in South and North America for better projections of
future climate, with focus on projections of temperatures and precipitation. Results
showed that the proposed ensemble model outperforms several existing methods for
the problem. The estimated task relationship were found to be accurate and consis-
tent with domain knowledge on the problem. Additionally, we performed an analysis
on a variety of classification problems from different domains, including multi-label
classification.

Key-words: Multitask Learning, Earth System Models Ensemble, Sparse Models,
Structure Learning, Probabilistic Graphical Models
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Notation

In general, capital Latin letters (e.g. X, Y , and Z) denote matrices and lowercase
Latin bold letters (e.g. w, x) denote vectors. All vectors are column vectors. Capital Greek
letters (e.g. Θ, Ω) are matrix model parameters and lowercase bold Greek letters (e.g. µ, θ)
describe vector model parameters. Calligraphic letters are used to denote spaces (e.g. B, X ,
and Y), except for G, V , and E , which are used to denote graph, vertex, and edge set, respec-
tively.

Symbol Meaning

Spaces and Sets
Rn space of n-dimensional real numbers

Rn×m space of n-by-m real matrices
Sd+ space of d-dimensional semi-definite matrices

Matrices and Vectors
tr(A) trace of matrix A
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Probability and Statistics
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Σ. Inverse of covariance (precision) matrix is denote by Ω = Σ−1
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Chapter 1
Introduction

“ Imagination is more important than knowledge. For knowledge is limited
to all we now know and understand, while imagination embraces the entire
world, and all there ever will be to know and understand.

”
Albert Einstein

In statistics and machine learning it is common to face a situation in which multiple
models must be trained simultaneously. For example, in collaborative spam filtering the problem
of learning a personalized filter (classifier) can be treated as a single supervised learning task
involving data from multiple users; in finance forecasting, models for simultaneously predicting
the value of many possibly related indicators is often required; and in multi-label classification,
where the problem is usually split in binary classification problems for each label, the joint
synthesis of the classifiers possibly allowing exploiting label dependencies can be beneficial.

In recent years, we have seen a growing interest in personalized systems, where
each user (or a category of users) gets his/her own model instead of using a one-size-fits-all
model1. From a machine learning point of view, it requires training a model for each user.
It may, however, bring many challenges such as a high susceptibility to over-fitting due to
the over-parametrization of the model. Additionally, it is likely that many users have only
a very limited amount of data samples available for training, which can compromise models’
performance. Personalized systems have a potential demand for machine learning methods
designed to deal with multiple tasks simultaneously.

As mentioned, a straightforward strategy to deal with multiple tasks is to train
a single one-size-fits-all model. Nevertheless, it ignores particularities of each task. Another
common approach is to perform the learning procedure of each task independently. However,
in situations where the tasks may be related to each other, the strategy of isolating each task
will not exploit the potential information one may acquire from other related tasks. Therefore,
it tends to be advantageous looking for something in between those two extreme scenarios.

1One-size-fits-all model refers to the development a single model that works for all problems. In the collab-
orative spam filtering example, it consists of building a single spam filter for all users.
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1.1 Motivating Example: Training Multiple Classifiers

Consider the problem of building a spam detection system. For the matter, we
will train a classifier to discriminate between spam and non-spam given a set of features from
the email: words contained in the body, subject, sender, meta information, among others. We
therefore gather a collection of emails from different users properly labeled as spam or non-spam,
to serve as a training data, as shown in Figure 1.1.

Figure 1.1: Collected labeled e-mails from a set of users.

In traditional machine learning, two straightforward strategies to built such system
are: (i) train a single classifier pooling data from all users (pooling) or (ii) train a classifier
for each user using only its data (individual). Figure 1.2 illustrates both strategies. Training
a classifier is a task. Therefore, in the first strategy a single larger task is needed to be done,
while in the second multiple tasks exist.

Figure 1.2: Pooling (left) and individual (right) strategies.

Clearly, each strategy has its own advantages and limitations. By training a single
classifier for all users completely neglects the differences between the users with regard to what
is considered spam. The same email may be marked as spam for a user, but not for another. On
the other hand, training a classifier for each user in isolation, it allows obtaining a personalized
spam detector that will capture particular characteristics of the user. However, as it is trained
considering only its own data (emails), the classifier may not be able to detect other possible
types of spams or new tricks used by spammers, which may be contained in other user’s emails.
Additionally, a new user will have no or very limited amount of labeled emails to train his/her
own classifier and, as a consequence, the classifier will perform badly at the beginning. Thus,
a strategy that exploits the best of the two worlds is preferable.

It is expected that users with similar tastes are very likely to have equivalent clas-
sifiers. Assuming it is known that two users agree with what is considered a spam, it is then
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possible to improve each user’s classifier by exploiting such relationship between users. On the
other hand, for completely unrelated users, it might be better to have their classifiers learned
in isolation.

This general scenario of having multiple tasks that need to be learned simultane-
ously is also seen in many domains other than spam detection. A similar setting is observed in
modeling users’ preferences in a recommendation system; predicting the outcome of a therapy
attempt for a patient with certain disease, taking into account his/her genetic factors and the
biochemical components of the drugs; multi-label classification with binary relevance transfor-
mation, where a classifier for each label is needed to be trained and there should be several
related labels. In fact, as will be seen in Chapter 2, even traditional problems that are being
modeled as a single task can be posed as multiple task learning.

1.2 Multitask Learning: Exploring Task Commonalities

Multitask learning (MTL) (Caruana, 1993; Baxter, 1997) is a compelling candidate
to deal with problems where multiple related models are to be estimated. Multitask learning-
based methods seek to improve the generalization capability of a learning task by exploiting
commonalities of the tasks. To allow exchange of information, a shared representation is usually
employed. Applying the multitask learning idea in the multiple spam filters problem discussed
in section 1.1, each user would have its own spam filter, however the training of the classifiers
is performed jointly, so that emails from related users are implicitly used.

Even though departing from distinct modeling strategies, many multitask learning
formulations are in essence instances of a general form, given by:

minimize
θ1,...,θm

m∑
k=1

1

nk

(
nk∑
i=1

`
(
f(xik,θk), y

i
k

))
︸ ︷︷ ︸

joint empirical risk (training error)

+λR(θ1, θ2, ..., θm)︸ ︷︷ ︸
joint regularizer

(1.1)

where m is the total number of tasks, f is a predictive function, and ` is a loss function. The
joint regularizer is responsible for allowing tasks to make use of information from other related
tasks, thus improving their own performance. Different hypotheses of how tasks are related lead
to distinct characterizations of the joint regularizer. These characterizations and formulations
other than the regularization-based on (1.1) exist and are discussed in Chapter 2.

Benefits of MTL over traditional independent learning have been supported by many
experimental and theoretical works (Evgeniou and Pontil, 2004; Ando et al., 2005; Bickel et al.,
2008), (Bakker and Heskes, 2003; Ben-David et al., 2002; Ben-David and Borbely, 2008; Maurer
and Pontil, 2013).

1.3 Thesis Agenda: Explicit Task Relationship Model-

ing

In the large body of research on multitask learning, the assumption that all tasks
are related is frequently made. However, it may not hold for some applications. In fact, sharing
information with unrelated tasks can be detrimental to the performance of the tasks (Baxter,
2000). Then, a fundamental step is to estimate the true relationship structure among tasks, thus
promoting a proper information sharing among related tasks while avoiding using information
from unrelated tasks.
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In this thesis, we investigate the problem of estimating task relationships from the
data available and aggregate this information when learning task-specific parameters. The task
relationships help to proper control how the data is shared among the tasks. In particular,
we propose a family of MTL methods that is built on a hierarchical Bayesian model where
task dependencies are explicitly estimated from the data, besides the parameters (weights) of
each task. We assume that features across tasks come from a prior distribution. We employ
two distributions: a multivariate Gaussian distribution with zero mean and unknown precision
(inverse covariance) matrix; and a semiparametric Gaussian copula distribution (Liu et al.,
2012) that is known for its flexibility. Thus, task relationship will naturally be captured by
the hyper-parameter of the prior distribution. The method is referred to as Multitask Sparse
Structure Learning (MSSL). Other variants of the MSSL are also explored in this thesis.

Unlike other MTL methods, MSSL measures tasks relationship in terms of partial
correlation, which has a meaningful interpretation in terms of conditional independence, instead
of ordinary correlation. Experiments in many classification and regression problems from dif-
ferent domains have shown that MSSL significantly reduce the sample complexity, that is, the
required number of training samples for the algorithm to successfully learn a target function.
Roughly speaking, this is due to the fact that MSSL allows tasks to selectively borrow samples
from other related tasks.

1.4 Main Contributions of the Thesis

Our primary contribution in this thesis is to simultaneously learn the structure
and the tasks. More specifically we assume that the task relationship can be encoded by an
undirected graph. We pose the problem as a convex optimization problem over parameters for
each task and a set of parameters which describes the relationship between the tasks.

The research developed in the work advances the field of machine learning in the
following ways:

• We proposed a family of multitask learning models that explicitly estimate and incor-
porate task relationship structure via a hierarchical Bayesian model. Therefore, besides
the set of parameter vectors for all tasks, a graphical representation of the dependence
among tasks is estimated. The proposed methods can deal with both classification and
regression problems.

• Semiparametric Gaussian Copula (SGC) (or nonparanormal) distribution is used as prior
for features across multiple tasks in the hierarchical Bayesian model. SGC are flexible
models that relaxes the Gaussian assumption of the marginals and their linear correlation,
allowing to capture rank-based nonlinear correlation among tasks. To the best of our
knowledge, this is the first work that uses Copula models to capture task relationship.

• We propose a multilabel classification method based on multitask learning with label de-
pendence estimation. The method consists of two steps: (1) learn the label dependence
via Ising-Markov random field; and (2) incorporate the learned dependence in a regular-
ized multitask learning formulation that allows binary classifiers to transfer information
during training.

• We shed a light on the important problem in climate science called Earth System Model
(ESM) ensemble from a multitask learning perspective. Extensive set of experiments were
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conducted and showed that MTL methods can, in fact, improve the quality of medium-
and long-term predictions of temperature and precipitation, which may help to predict
climate phenomena such as El-Niño/La-Niña.

• A hierarchical multitask learning formulation is proposed for the problem of ESM ensem-
ble for multiple climate variables. Here, each task is in fact a multitask learning problem.
Two levels of sharing exist: task parameters and task dependencies.

A common theme in all of our algorithms is that they are capable of performing a selective
information sharing. The guidance is defined by an undirected graph that encodes task
relationship and is estimated during the joint learning process of all tasks.

1.5 Thesis Roadmap

The thesis is organized in two major parts: background and the proposals, which we
referred to as Multitask with Sparse and Structural Learning.

In the background part, Chapters 2 and 3 provide the knowledge, concepts, and
tools to support all the proposed models and methods developed in this thesis. We set up the
multitask learning problem and discuss the main methods already proposed for the problem.
Fundamental tools for dependence modeling are discussed.

The second part comprises Chapter 4, 5, and 6 where the main contributions are
presented. We may say that the methods proposed in Chapters 5 and 6 are extensions of the
formulation presented in Chapter 4. Several portions of this thesis are mainly based on joint
works with collaborators.

• Chapter 2 formally introduces the multitask learning paradigm. We present an extensive
literature review and discuss the methods more related to those proposed in this the-
sis. Additionally, we compare the multitask learning setting with many related areas in
the machine learning community, such as transfer learning, multiple output regression,
multilabel classification, domain adaptation, and covariate shift.

• Chapter 3 discusses tools to model dependence among random variables with emphasis
in the undirected graphical models. The two most common undirected graphical models
are presented, namely Gaussian graphical model (or Gauss-Markov Random Field) and
Ising models (or Ising-Markov random field). Recent advances in structure learning in
those models are also presented.

• Chapter 4 introduces our general framework for multitask learning, named Multitask
Sparse Structure Learning (MSSL). An extension that uses semiparametric copula models
is also proposed. Such model has been recognized for its flexibility to deal with non-
Gaussian distributions as well as for being more robust to outliers. Parameter estimation
aspects of three instances of the MSSL framework are discussed in more details. We
apply the proposed method both in classification and regression problems, with emphasis
on the problem of Earth System Model ensemble. This chapter is based on Gonçalves
et al. (2014) and Gonçalves et al. (2015).

• Chapter 5 presents a multitask learning method for the problem of multilabel classifica-
tion, where labels dependence is modeled by an Ising model. The algorithm is referred
to as Ising-Multitask Structure Learning (I-MTSL). The effectiveness of the algorithm is
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demonstrated on several multilabel classification datasets and compared to the perfor-
mance of well-established methods for the problem. This chapter is based on Gonçalves
et al. (2015).

• Chapter 6 extends the MSSL to a hierarchical formulation, referred to as U-MSSL, for
multiple ESMs ensemble problem. Compared to MSSL and existing MTL methods that
only allow sharing model parameters, U-MSSL is a hierarchical MTL with two levels of
information sharing: (1) model parameters (coefficients of linear regression) are shared
within the same super-task; and (2) precision matrices, modeling the relationship of sub-
tasks, are shared among the super-tasks by means of group lasso penalty.

The conclusions and future directions are provided in Chapter 7.



Part I

Background
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Chapter 2
Overview of Multitask Learning Models

“ The sciences do not try to explain, they hardly even try to interpret, they
mainly make models. By a model is meant a mathematical construct which,
with the addition of certain verbal interpretations, describes observed phe-
nomena. The justification of such a mathematical construct is solely and
precisely that it is expected to work - that is correctly to describe phenomena
from a reasonably wide area. Furthermore, it must satisfy certain esthetic
criteria - that is, in relation to how much it describes, it must be rather
simple. ”

John Von Neumann

In this chapter we formally introduce multitask learning (MTL) and present an
overview of the existing methods, highlighting their assumptions regarding two key components,
task relatedness and shared information. This review will help to properly place our methods in
the field. We will also discuss advances in the theory behind multitask learning and how MTL
compares to related areas such as multilabel classification, multiple-output regression, transfer
learning, covariate shift, and domain adaptation. We discuss the relation between multitask
learning and a well-known result in statistics, the Stein’s paradox. The broad spectrum of
problems to which multitask learning methods have successfully been applied is also presented.

2.1 Multitask Learning

Learning for multiple tasks, such as regression and classification, simultaneously arise
in many practical situations, ranging from object detection in computer vision, going through
web image and video search (Wang et al., 2009), and achieving multiple microarray data set
integration in computational biology (Kim and Xing, 2010; Widmer and Rätsch, 2012). The
steadily growth of interest in personalized machine learning models, where a model is trained
for each entity (such as user or language) also boosts the need of methods to deal with multiple
tasks simultaneously. The tabula rasa approach in machine learning is to train a model for each
task in isolation, then only looking to its own data.

Clearly, the tabula rasa, also known as single task learning, ignores the information
regarding the relationship of the tasks. Multitask learning are, therefore, machine learning
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techniques endowed with a shared representation capacity to allow such relatedness information
to flow among the tasks aiming to produce more accurate individual models. As stated by
Caruana (1997), “Multitask Learning is an approach to inductive transfer that improves learning
for one task by using the information contained in the training signals of other related tasks”.

Figure 2.1 shows the conceptual difference between multitask learning and the tra-
ditional single task learning. Still a model for each task is considered, but the training of the
models is performed jointly to exploit possible relation among them.

Figure 2.1: Difference between multitask learning and traditional single task learning. In MTL
the learning process involves all the tasks and is performed jointly, allowing the exchange of
information.

2.1.1 General Formulation of Multitask Learning

Multitask learning can be more formally presented as follows. Suppose we are given
a set of m supervised learning tasks, such that all data for the k-th task, (Xk,yk), come from
the space X × Y , where X ⊂ Rd and Y is dependent on the task, for example, Y ⊂ R for
regression and Y ⊂ {0, 1} for binary classification. For each task k only a set of nk data
samples is available, xik ∈ X and yik ∈ Y , i = 1, ..., nk. The goal is to learn m parameter vectors
θ1, ...,θm ∈ Rd such that f(xik,θk) ≈ yik, k = 1, ...,m, and i = 1, ..., nk. We denote by Θ a
matrix whose column vectors are the parameter vectors, Θ = [θ1, ...,θm].

In the learning problem associated with the task k, an unknown joint probability
distribution relates the input-output variables, p(Xk,yk), meaning the probability of observing
the input-output pair (xik,y

i
k). The parameter vector θ maps the input x to the output y and

a loss function ` defined in R2 penalizes inaccuracy of predictions, which includes squared,
logistic, and hinge loss as examples. The expected loss, or risk, of the parameter vector θk
of the k-th task is E(Xk,yk)∼p[`(f(Xk,θk),yk)]. So, in multitask learning we are interested in
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minimizing the total risk

R(Θ) =
m∑
k=1

E(Xk,yk)∼p[`(f(θk, Xk),yk)] =
m∑
k=1

∫
X×Y

`
(
f(xk,θk), yk

)
dp(xk, yk). (2.1)

As in practice the distribution p is unknown and only a finite set of nk i.i.d. samples Dk =
{(xik, yik)}

nk
i=1 drawn from such distribution is available, an intuitive learning strategy is the

empirical risk minimization. With the entire multi-sample represented as D̄ = (D1, ..., Dm),
the total empirical risk is computed as follows

R̂(Θ, D̄) =
m∑
k=1

1

nk

(
nk∑
i=1

`
(
f(xik,θk), y

i
k

))
. (2.2)

However, directly minimizing the total empirical loss is equivalent to solving each task inde-
pendently

θk(D
k) = arg min

θk

1

nk

nk∑
i=1

`
(
f(xik,θk), y

i
k

)
. (2.3)

To allow information sharing, a commonly used strategy is to constraint the parameter vectors
θk to lie in a (or many) shared unknown subspace(s) B ⊆ Rd, but assumed to have a certain
topology that implies mutual dependence among the vectors θk. This is enforced by a regular-
ization on the total empirical risk. As will be seen in the next sections, different assumptions
on the dependence among tasks lead to specific forms of regularization. MTL methods in this
class are known as regularized multitask learning.

Regularized Multitask Learning

In the class of regularized multitask learning, the existing methods can be seen as
instances of the regularized total empirical risk formulation as follows:

R̂reg(Θ, D̄) =
m∑
k=1

1

nk

(
nk∑
i=1

`
(
f(xik,θk), y

i
k

))
+ R(Θ) (2.4)

where R(Θ) is a regularization function of Θ designed to allow information sharing among
tasks. In the next section, we present a survey of the multitask learning algorithms and discuss
the regularization functions used to encourage structural task relatedness and how this relates
to two important aspects of multitask learning formulations: (i) task relationship assumption,
and (ii) types of information shared among related tasks.

2.2 Models for Multitask Learning

MTL has attracted a great deal of attention in the past few years and consequently
many algorithms have been proposed (Evgeniou and Pontil, 2004; Argyriou et al., 2007; Xue
et al., 2007b; Jacob et al., 2008; Bonilla et al., 2007; Obozinski et al., 2010; Zhang and Yeung,
2010; Yang et al., 2013; Gonçalves et al., 2014). Therefore, it becomes a great challenge to
cover them all. In this chapter, we present a general view of major lines of research in the field,
highlighting the most important methods and discussing in more details those more related to
the methods proposed in this thesis.
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Early stages of multitask learning (Caruana, 1993), (Caruana, 1997), and (Baxter,
1997) focused on information sharing in neural network models, particularly hidden neurons.
Examples of these formulations will be discussed in the next sections. Lately, most of the
proposed methods are formulations belonging to the class of regularized multitask learning
(2.4). The existing algorithms basically differ the way the regularization function R(Θ) is
designed, including restrictions imposed on the structure of the matrix of parameters Θ and
the relationship among tasks. Some methods assume a fixed structure a priori, while others try
to estimate such information from the available data.

In the next sections, we will present an overview of the MTL methods, categorizing
them according to their assumption regarding task relatedness and the information shared.

2.2.1 Task Relatedness

A key component in MTL is the notion of task relatedness. As pointed out by
Caruana (1997) and also corroborated by Baxter (2000), it is fundamental that information
sharing is allowed only among related tasks. Exchanging information with unrelated tasks, on
the other hand, may be detrimental. This is known as negative transfer. It is therefore important
to build multitask learning models that benefit related tasks and do not hurt performance of
unrelated ones.

Some existing multitask learning methods simply assume that all tasks are related
and only controls what is shared. Others assume beforehand the task dependence structure,
for example in clusters or encoded in a graph, and, therefore, the sharing is determined by such
a priori structure. More recently, flexible methods do not assume any dependence beforehand,
but learn it from the data jointly with task parameters.

From this perspective, we identify three categories of multitask learning methods
according to their task relatedness assumption: 1) all tasks are related; 2) tasks are organized
in clusters or in a tree/graph structure; and 3) task dependence is estimated from the data.
Figure 2.2 presents instances of methods belonging to each of these categories.

Task relatedness in
Multitask Learning

All tasks are related
Cluster/graph
relationship

Dependence learning

Ando et al. (2005)

Argyriou et al. (2007)

Jalali et al. (2010)

Obozinski et al. (2010)

Chen et al. (2012)

...

Evgeniou et al. (2005a)

Xue et al. (2007b)

Bakker and Heskes (2003)

Xue et al. (2007a)

Zhou et al. (2011a)

...

Zhang and Schneider
(2010)

Rothman et al. (2010)

Zhang and Yeung (2010)

Sohn and Kim (2012)

Yang et al. (2013)

...

Figure 2.2: MTL instances categorization with regard to task relatedness assumption.
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All Tasks are Related

The assumption of all tasks are related and the information about tasks are selec-
tively shared has been widely explored by multitask learning. Several hypotheses have been
suggested on the true structure of the parameter matrix Θ that controls how the information
is shared. Table 2.1 presents examples of these assumptions together with the corresponding
regularization term R(Θ) deliberately designed to enforce the hypothesized structure.

Name Regularization −R(Θ) Reference

Mean Regularized λ1

∑m
k=1 ‖θk −

1
m

∑m
t=1 θt‖

(Evgeniou and
Pontil, 2004)

Joint Feature Selection λ1‖Θ‖1,2
(Argyriou et al.,

2007)

Dirty Model λ1‖P‖1,∞ + λ2‖Q‖1 (Jalali et al., 2010)

Low Rank λ1‖Θ‖∗ (Ji and Ye, 2009)

Sparse+Low Rank

λ1‖P‖1

s.t. Θ = P +Q,

‖Q‖∗ ≤ τ.

(Chen et al., 2012)

Relaxed ASO

λ1η(1 + η)tr(Θ(ηId +M)−1Θ>)

s.t. tr(M) = # of clusters

M � Id ∈ Sd+
η = λ2

λ1

(Chen et al., 2009)

Robust MTL
λ1‖P‖∗ + λ2‖Q‖1,2

s.t. Θ = P +Q
(Chen et al., 2011)

Robust Feature Learning
λ1‖P‖2,1 + λ2‖Q‖1,2

s.t. Θ = P +Q
(Gong et al., 2012a)

Multi-stage Feature Learning λ1

∑d
j=1 min(‖θi‖1, ξ) (Gong et al., 2012b)

Tree-guided Group Lasso MTL λ
∑
j

∑
v∈V

ωv‖θjGv
‖2

(Kim and Xing,
2010)

Sparse Overlapping Sets Lasso
MTL

infW
∑
G∈G

(αG‖ωG‖2 + ‖ω‖1)

s.t.
∑
G∈G

ωG = vec(Θ)
(Rao et al., 2013)

Table 2.1: Example of task relatedness assumptions in existing multitask learning models and
the corresponding regularizers. Adapted from MALSAR manual (Zhou et al., 2011b).

In Thrun and O’Sullivan (1995, 1996) the task clustering (TC) algorithm is proposed
to deal with multiple learning tasks. Related tasks are grouped into clusters, where relatedness
is defined as the mutual performance gain, whenever a task k improves by knowledge transfer
from task k′, and vice versa. If it is not the case, tasks are set to different clusters. As a
new task arrives, the most related task cluster is identified and only knowledge from this single
cluster is transferred to the new task.

Evgeniou and Pontil (2004) assumed all tasks are related in a way that the model
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parameters are close to some mean model. Motived by sparsity inducing property of the `1 norm
(Tibshirani, 1996), the idea of structured sparsity has been widely explored in MTL algorithms.
Argyriou et al. (2007) assumed that there exists a subset of features that is shared for all the
tasks and imposed an `2,1-norm penalization on the matrix Θ to select such set of features.
In the dirty-model proposed in Jalali et al. (2010), the matrix Θ is modeled as the sum of a
group sparse and an element-wise sparse matrix. The sparsity pattern is imposed by `q and
`1-norm regularizations. Similar decomposition was assumed in Chen et al. (2012), but here Θ
is a sum of an element-wise sparse (`1) and a low-rank (nuclear norm) matrix. The assumption
that a low-dimensional subspace is shared by all tasks is explored in Ando et al. (2005), Chen
et al. (2009), and Obozinski et al. (2010). For example, in Obozinski et al. (2010) a trace norm
regularization on Θ is used to select the common low-dimensional subspace.

Tasks are Related in a Cluster or Graph Structure

Another explored assumption about task relatedness is that not all tasks are related,
but instead the relatedness is in a group (cluster) structure, that is, mutual related tasks are
in the same cluster, while unrelated tasks belong to different groups. Information is shared
only with those tasks belonging to the same cluster. The problem then becomes estimating the
number of clusters and the matrix encoding the assignment cluster information.

In Bakker and Heskes (2003) task clustering is enforced by considering a mixture of
Gaussians as a prior over task parameters. Evgeniou et al. (2005b) proposed a task clustering
regularization to encode cluster information in the MTL formulation. Xue et al. (2007b) employs
a Dirichlet process (DP) prior over the task coefficients to encourage task clustering, with the
number of clusters being automatically determined by the prior. DP prior allows to cluster the
coefficients for all features in the same manner, and therefore it does not afford the flexibility to
allow feature-dependent task clustering. To mitigate such restriction, a more flexible clustering
formulation is presented in Xue et al. (2007a), a matrix stick-breaking process prior to encourage
local clustering of tasks with respect to a subset of the features.

Table 2.2 shows instances of regularization functions R(Θ) used to encourage task
clustering.

Name Regularization −R(Θ) Reference

Graph Structure λ1‖ΘR‖2
F + λ2‖Θ‖1 (Li and Li, 2008)

Multitask Clustering
∑t

i=1 ‖ΘXi −MP>i ‖2
F (Gu and Zhou, 2009)

Clustered MTL Clustering
α(tr(Θ>Θ)− tr(F>Θ>ΘF )) +

βtr(Θ>Θ)
(Zhou et al., 2011a)

Table 2.2: Instances of MTL formulations with the cluster task relatedness assumption.
Adapted from MALSAR manual (Zhou et al., 2011b).

For graph structured MTL approaches, two tasks are related if they are connected
in a graph, i.e. the connected tasks are similar. The similarity of two related tasks can be
represented by the weight of the connecting edge (Kim and Xing, 2010; Zhou et al., 2011a).
The absence of connection between two nodes in the graph indicates that the corresponding
tasks are unrelated and, consequently, no information is shared.

Actually, many of the formulations associated with the dependence learning category
that will be presented next, boils down to represent the task relationships by means of a graph
that is explicitly learned from the training data.
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Explicitly Learning Task Dependence

Forcing transfer learn between tasks which are not related may hurt the performance
of learning, a situation which is often referred to as negative transfer (Pan and Yang, 2010).
So, it is crucial to properly identify the true structure among tasks.

Recently, there have been some proposals to estimate and incorporate the depen-
dence among the tasks into the learning process. The majority of them resort to hierarchical
Bayesian models, more specifically assuming some prior distribution over the task parameter
matrix Θ that captures task dependence information. Figure 2.3 depicts the arrangement of
a regular hierarchical Bayesian model. Data for each task is assumed to be sampled from a
parametric distribution defined by its parameter θk, which in turn are samples of a common
prior distribution p(π) which may carry information from the dependence of the vectors of
parameters θk, k = 1, ...,m.

Figure 2.3: Graphical representation of a hierarchical Bayesian model for multitask learning.
Tasks parameter vectors θk, k = 1, ...,m are independent samples from the same prior distribu-
tion p(π).

A matrix-variate normal distribution was used as a prior for Θ matrix in Zhang
and Yeung (2010). The hyper-parameter for such a prior distribution captures the covariance
matrix among all task coefficients. The resulting non-convex maximum a posteriori problem is
relaxed by restricting the model complexity. It has a positive side of making the whole problem
convex, but has the downside of significantly restricting the flexibility of the task relatedness
structure. Also, in Zhang and Yeung (2010), the task relationship is modeled by the covariance
among tasks, but uses the inverse in the task parameter learning step. Therefore, the inverse
of the covariance matrix have to be computed at every iteration.

Zhang and Schneider (2010) also used a matrix-variate normal prior over Θ. The
two matrix hyper-parameters explicitly represent the covariance among the features (assuming
the same feature relationships in all tasks) and covariance among the tasks, respectively. Sparse
inducing penalization on the inverse of both is added into the formulation. Unlike Zhang and
Yeung (2010), both matrices are learned in an alternating minimization algorithm and can
be computationally prohibitive in high dimensional problems due to the cost of modeling and
estimating the feature covariance.

Yang et al. (2013) also assumed a matrix-variate normal prior for Θ. However,
the row and column covariance hyperparameters have a Matrix Generalized Inverse Gaussian
(MGIG) prior distribution. The mean of matrix Θ is factorized as the product of two matrices
that also has matrix-variate normal distribution as a prior. The model inference is done via
a variational Expectation Maximization (EM) algorithm. Due to the lack of a closed form
expression to compute statistics of the MGIG distribution, the method resort to sampling
techniques, which can be slow for high-dimensional problems.
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Unlike most of the aforementioned methods that model task correlation by means
of the task parameters, in the multivariate regression with covariance estimation (MRCE)
presented in Rothman et al. (2010), the correlation of the response variables arises from the
correlation in the errors, that is, the i.i.d. residuals ε1, ε2, ..., εn ∼ Nm(0,Ω). Therefore, two
tasks are related if their residuals are correlated. Sparsity on both Θ and Ω is enforced. Rai
et al. (2012) extended the formulation in Rothman et al. (2010) to model feature dependence,
additionally to the task dependence modeling. However, it is computationally prohibitive for
high-dimensional problems, due to the cost of estimating another precision matrix for feature
dependence.

Zhou and Tao (2014) used copula as a richer class of conditional marginal distribu-
tions p(yk|x). As copula models express the joint distribution p(y|x) from the set of marginal
distributions, this formulation allows marginals to have arbitrary continuous distributions. Out-
put correlation is exploited via the sparse inverse covariance in the copula function, which is
estimated by a procedure based on proximal algorithms. Our method also covers a rich class
of conditional distributions, the exponential family that includes Gaussian, Bernoulli, Multino-
mial, Poisson, and Dirichlet, among others. We use Gaussian copula models to capture tasks
dependence, instead of explicitly modeling marginal distributions.

All the methods proposed in this thesis lie in this category. Task relationship struc-
ture will be explicitly captured by a hyper-parameter of a prior distribution in a hierarchical
Bayesian model. We learn such a structure given that it is not available beforehand. As it will
be discussed in Chapters 4, 5, and 6, the task relationship representation will, in fact, be given
by an undirected graph with nice properties such as conditional dependence among tasks.

2.2.2 Shared Information

As discussed earlier, the central issue in multitask learning is to share information
between related tasks. A follow-up question is what do related tasks share? Or, more precisely,
what kind of information two related tasks share to each other? Researchers answered this
question in different manners.

Considering the type of information shared, the existing multitask learning algo-
rithms can be mainly categorized into four lines of research: (i) data samples, (ii) model
parameters or prior, (iii) features, and (iv) nodes of neural networks. Figure 2.4 presents few
examples of existing MTL approaches in each of the four mentioned assumption.

The assumption of data samples sharing has not been explored in much of the
existing MTL formulations. In fact, few methods followed this direction. It is probably due
to the need of modeling joint distributions p(X, Y ) for all tasks, which for high-dimensional
problems is quite challenging. This is commonly used in domain adaptation and covariate shift
methods under the name of importance weighting methods (Jiang and Zhai, 2007). We will
present a brief discussion on these two problems, that are closely related to MTL, later in this
chapter.

In the second category, the formulations assume that related tasks share similar
parameter vectors. We may say that most of MTL methods, particularly the regularized ones,
fall in this category. Many others assume that task parameter vectors are samples drawn from
a common prior distribution, in a hierarchical Bayesian modeling. The majority of the methods
that perform task dependence learning fall in this category.

Methods in the last category assume that if tasks are related they should share a
common feature space. The goal is then to learn a low-dimensional representation shared across
related tasks. The full set of features of a certain task is usually the combination of a subset of
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Shared information in
Multitask Learning

Data samples
Model param-
eters or prior

Features
Nodes of Neural

Networks

Bickel et al. (2008)

Bonilla et al. (2007)

Quionero-Candela et al.
(2009)

...

Bakker and Heskes (2003)

Evgeniou and Pontil
(2004)

Xue et al. (2007b)

Li and Li (2008)

Agarwall et al. (2010)

Zhang and Yeung (2010)

...

Ando et al. (2005)

Evgeniou and Pontil
(2007)

Ji et al. (2008)

Liu et al. (2010)

Luo et al. (2013)

...

Caruana (1993)

Caruana (1997)

Collobert and Weston
(2008)

Seltzer and Droppo (2013)

Zhang et al. (2014)

Setiawan et al. (2015)

Figure 2.4: Lines of research regarding the information shared among related tasks.

features shared with all the related tasks and a subset of task specific features.

Multitask learning has been used with neural networks in two distinct ages of the
MTL development: at the very beginning with the seminal works of Caruana (1993) and Caru-
ana (1997), and recently with the renewed interest in neural networks due to the rising of the
deep neural networks, with particular application in natural language processing (Collobert and
Weston, 2008), computer vision (Seltzer and Droppo, 2013), and machine translation (Zhang
et al., 2014). These areas have seen significant progress with the combination of deep neural
networks and multitask learning.

2.2.3 Placing Our Work in the Context of MTL

In this thesis, we propose a family of MTL methods capable of estimating task
dependence from the data and incorporating this information in the learning process of task
parameters. To do so, the joint learning is allowed via a hierarchical Bayesian model, where we
assume that features of all tasks have a common prior distribution, where the hyper-parameter
of such distribution encodes task dependence.

Two classes of prior distributions are proposed in this work. First, a multivariate
Gaussian distribution is assumed. As will be clear in the next chapters, it implies that task pa-
rameters for each task is normally distributed with zero mean and unknown standard deviation,
besides that the tasks are linearly correlated through the precision matrix of the Gaussian prior
(hyper-parameter). Second, a flexible copula distribution is assumed. It implies a much weaker
assumption of the individual task parameter distribution, which can now be any parametric or
even non-parametric distribution, and task parameters can be non-linear correlated.

Therefore, we may say that the methods developed in Chapters 4, 5, and 6 be-
long to the category of methods with dependence learning, with regard to the task relatedness
assumption, and to the category of model parameters or prior, in respect to the kind of informa-
tion shared among related tasks. The advantages and limitations of the methods presented in
this thesis when compared to the existing ones will be discussed throughout the corresponding
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chapters.

2.3 Theoretical Results on MTL

Theoretical investigations have been carried out to clearly expose the conditions
under which multitask learning is preferable to single task learning. Bounds were given for
general multitask learning problems as well as for formulations with special assumptions of
task relatedness Ben-David and Schuller (2003); Maurer and Pontil (2013) (including some of
those in Table 2.1). These bounds provide a quantitative measure of how much MTL methods
can improve single task learning with regard to characteristics of the problems, such as the
distributions underlying the training data.

In a seminal work on theoretical analysis of multitask learning, Baxter (2000) used
covering numbers to derive general (uniform) bounds on the average error of m related tasks.
From the results, Baxter claims that “learning multiple related tasks reduces the sampling bur-
den required for good generalization, at least on a number-of-examples-required-per-task basis”.
In other words, multitask learning requires a smaller number of training samples per task
when compared to single task learning to achieve the same level of generalization capability.
Closely related to Baxter (2000), Ando et al. (2005) also provided generalization bounds using
Rademacher averages and a slightly different definition of covering numbers. The provided
bounds show that by minimizing the joint empirical risk in (2.2) instead of independent empir-
ical risk of each task, it is possible to estimate the shared subspace more reliably as the number
of tasks grows (m→∞).

Lounici et al. (2011) provided bounds for a multitask learning formulation with the
assumption that tasks share a small subset of features, induced by Group Lasso penalty. The
bounds show that Group Lasso regularization is more advantageous than the usual Lasso in the
multitask setting. More precisely, MTL with Group Lasso regularization achieves faster rates
of convergence in some cases as compared to MTL with Lasso penalty.

Maurer and Pontil (2013) used the method of Rademacher averages and results on
tail bounds for sum of random matrices to establish excess risk bounds for a multitask learning
formulation with trace norm regularization (tasks share a common low dimensional space) with
explicit dependence on the number of task, number of examples per task and properties of
data distribution. Excess risk measures the difference between the total empirical risk in (2.2)
and the theoretical optimal one given by (2.1). From the derived bounds, it is possible to say
that MTL with shared low rank subspace has a worse bound than standard bounds for single
task learning if the mixture of data distribution from all tasks are supported on a very low
dimensional space. In other words, when the problem is already easy, the bounds for the MTL
formulation with low rank regularization show no benefit.

2.4 Stein’s Paradox and Multitask Learning

We have shown so far that multitask learning is grounded on the principle that
jointly learning multiple related tasks and therefore allowing to exploit possible commonalities
can improve performance of individual tasks. A well known result in statistics due to Stein
(1956) corroborates which such hypothesis, the Stein’s paradox. It states that when three or
more parameters are estimated simultaneously, there exist combined estimators more accurate
on average (that is, having lower expected mean squared error) than any method that estimates
the parameters separately.
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The Stein’s paradox can be state more formally as follows. Let X = X1, ..., Xm be
a set of independent normally distributed random variables, i.e., Xk ∼ N (µ, 1) for k = 1, ...,m.
We are interested in finding an estimator for the unknown means µ1, ..., µm. Let us consider
mean squared error as measure of the quality of our estimation

Rµ̂(µ) = E{‖µ− µ̂‖2} =

∫ (
µ̂(x)− µ

)2

p(x|µ)dx. (2.5)

In other words, the risk function measures the expected value of the estimator’s error (the loss
function). We say that an estimator µ̂ is admissible if there is no other estimator µ∗ with
smaller risk, that is, Rµ∗(µ) ≤ Rµ̂(µ) for all µ. Stein proved that µ̂ is admissible for m ≤ 2,
but inadmissible for m ≥ 3. And in James and Stein (1961) the authors proposed an estimator,
which lately became the James-Stein (JS) estimator, that strictly dominates the traditional
maximum likelihood estimator for m ≥ 3, that is, the JS estimator always achieves lower MSE
than the maximum likelihood estimation:

µ̂JS(X) =

(
1− m− 2

‖X‖2

)
X. (2.6)

Most surprisingly is that no matter if variables Xk are candy weights, price of ba-
nana, and the temperature in Rio de Janeiro in Summer, Stein showed that it is better, in a
mean squared error sense, to jointly estimate the means of m Gaussian random variables using
data sampled from all of them, even if they are independent and have different means. So, it is
beneficial to consider samples from seemingly unrelated distributions in the estimation of the
t-th mean.

The Stein’s paradox can be seen as an early evidence of the soundness of multi-
task learning hypothesis, although counterintuitive as it works even for completely unrelated
random variables. MTL on the other hand focus on sharing information among related tasks
while avoiding sharing with unrelated ones. Also, MTL seeks to estimate fairly general task
parameters with unknown distribution, rather than means of Gaussian distributed variables as
in the Stein’s paradox.

2.5 Multitask Learning and Related Areas

Within the machine learning community there are areas closely related to multitask
learning. In the next sections, we will discuss the similarities and differences among those areas,
which include multiple-output regression, multilabel classification, transfer learning, domain
adaptation and covariate shift. This will help to clarify the overlapping between the areas and
identify if and when multitask learning methods can be applied to the problems arising from
those areas.

2.5.1 Multiple-Output Regression

The problem of multiple-output regression (or multivariate response prediction) has
been studied in the statistics literature for a long time. Unlike classical regression that aims
to predict a single response given a set of covariates, in multiple-output regression we seek to
estimate a mapping function from a multivariate input space X ⊂ Rd to a multivariate output
space Y ⊂ Rm, that is, estimate a function f : X → Y . Let us consider the multiple-output
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linear regression model. Given a set of samples {(xi,yi)}ni=1 ⊂ X × Y , the linear regression
model is defined as

yi = Θ>xi + εi, ∀i = 1, ..., n. (2.7)

where εi ∼ N (0, σ2) is the residual, and Θ = [θ1, ...,θm] is an d × m weight matrix whose
columns are the weights for each output. The maximum likelihood cost function is written as

J(Θ) =
m∑
k=1

1

n

n∑
i=1

(yik − θ>k xi)
2. (2.8)

Comparing (2.8) with the MTL formulation in (2.4) two important differences stand
out: (i) there are m independent single response regression problems, no regularization added;
and (ii) the inputs (covariates) are the same for all regressors, that is, X1 = X2 = ... = Xm.
Hence, classical multi-output regression problem can be seen as a specific case of multitask
learning problem, where no information is shared among tasks (independent learning) and the
input data X is the same for all tasks. As will be seen in Section 2.5.2, the same happens for
multilabel learning using binary relevance decomposition.

In order to take correlation between outputs into account, many papers have pro-
posed ways of capturing and incorporating output dependence information in the joint estima-
tion problem (Brown and Zidek, 1980; Breiman and Friedman, 1997).

In principle, any multitask learning method for regression can be applied in multiple
output regression, as they were particularly designed to deal with multiple task problems by
exploiting relationship among them. In fact, some recently proposed multiple output regression
methods are multitask learning methods (Rothman et al., 2010; Rai et al., 2012; Li et al., 2014).

2.5.2 Multilabel Classification

Similarly to the extension of ordinary single output regression methods to deal with
multiple outputs, we may consider multilabel classification as an extension to the single label
classification problems. In multilabel classification a single data sample x is associated with
m > 2 labels. For example, an image possibly contains a set of elements such as trees, cars,
people and streets. Then, given a new image we want to check which of these elements are
present.

More formally, let X ⊂ Rd and Y ⊂ {0, 1}m be the input and output space, respec-
tively. Given a training set {(xk,yk)}mk=1 ⊂ X × Y , we seek to estimate a classifier function
f : X → Y that generalizes well beyond the training samples.

One of the most common approaches to deal with multilabel classification is through
problem transformation. It transforms the multilabel classification problem in conventional
classification problems such as binary and multi-class, so that we can use off-the-shelf classi-
fiers (Tsoumakas and Katakis, 2007). In the binary relevance transformation, the multilabel
classification problem split in m independent binary classifiers and a classifier is then trained
independently for each label. Clearly, it has the same characteristics as multiple-output regres-
sion: ignores labels (tasks) dependence and the input data are the same for all tasks. Likewise,
we can see multilabel classification with binary relevance transformation as a specific case of
MTL.

Naturally, many papers proposed methods that take relationship among the classi-
fiers into account (Rai and Daume, 2009; Zhang and Zhang, 2010; Read et al., 2011; Marchand
et al., 2014). Considering the fuzzy boundaries between multilabel classification with binary
relevance transformation and multitask learning, it was expected that proposed methods for
multilabel classification are in fact multitask learning method (Luo et al., 2013).
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In this thesis we propose a multilabel classification method based on multitask learn-
ing that explicitly models label dependence through an Ising-Markov random field. This new
formulation is discussed in Chapter 5.

2.5.3 Transfer learning

In transfer learning, one seeks to leverage knowledge obtained in a previous source
task, to a new related learning target task. To more formally pose the transfer learning problem,
we need to introduce the concepts of domain and task. A domain D consists of two elements:
the input or feature space X and the marginal probability distribution p(X), where X ⊂ X .
Then, D = {X , p(X)}. A task T also consists of two elements, the output or label space Y and
a predictive function f , which is also represented as the conditional probability p(Y |X) with
Y ⊂ Y . Then, T = {Y , p(Y |X)}. In most practical cases, the number of source domain data
nS is much larger than the target domain, nT , that is, 0 ≤ nT � nS.

The question regarding the availability of labels in the source and target domains
will lead to a discussion that is out of the scope of this section. For a comprehensive exposition
of this topic, we refer interested readers to Pan and Yang (2010). Here, we assume that both
source and target contain labeled data, but as just mentioned 0 ≤ nT � nS.

In the following, we reproduce the formal definition of transfer learning due to Pan
and Yang (2010) that will serve as the basis for our discussion. From this definition we will
be able to present two closely related areas, domain adaptation and covariate shift, as specific
settings of transfer learning.

Definition 2.5.1 (Transfer Learning) Given a source domain DS and learning task TS, a target
domain DT and learning task TT , transfer learning aims to help improve the learning of the target
predictive function fT in DT using the knowledge in DS and TS, where DS 6= DT or TS 6= TT .

From the above definition, we notice three distinctive characteristics from the multi-
task learning setting: (i) it contains only two tasks - source and target ; (ii) we care most about
the target task; and (iii) the transfer is sequential (usually the source task is learned, then the
target). The aim is to improve performance of the target task, while in multitask learning the
goal is to improve the performance of all tasks, no preference is enforced. In transfer learning,
source task is more like an secondary information provider. Other aspect is that MTL involves
parallel transfer while transfer learning is built on sequential transfer.

Figure 2.5 shows a comparison between transfer and multitask learning in terms
of how the information is shared among tasks. In transfer learning the information flows
asymmetrically from source to target task, while in multitask learning the information is, in
principle, allowed to flow symmetrically among the tasks. Due to this perspective, transfer
learning is sometimes referred to as asymmetric multitask learning (Xue et al., 2007b).

In fact, there is also a more general setting of transfer learning where multi-source
domains exist. The problem is to transfer knowledge acquired from multiple source domains to
a target domain (Luo et al., 2008), but here we focus on the standard transfer learning setting
with two domains, which is the most common in practice.

The premise in transfer learning is that the source and target domains are related
but not the same. The tasks can differ in two aspects: the domain, DS 6= DT , or the learning
tasks, TS 6= TT . Except for specific problems, in practice we have a little understanding on
how the source and target differ. Therefore, assumptions on the mismatch are made. Depend-
ing on the assumption, the resulting problem has already been studied before under different
names including domain adaptation (Ben-David et al., 2007; Daume, 2007) and covariate shift
(Shimodaira, 2000).
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Figure 2.5: In transfer learning the information flows in one direction only, from the source task
to the target task. In multitask learning, information can flow freely among all tasks. Adapted
from Torrey and Shavlik (2009).

Domain Adaptation

In domain adaptation, the problem is to learn the same task but in different domains.
The idea is to leverage information from the source joint distribution pS(X, Y ) to help model
the distribution of the target domain pT (X, Y ). As the joint distribution can be decomposed
as p(X, Y ) = p(Y |X)p(X), the source and target domain can differ from one of the two factors:
the conditionals where pS(Y |X) deviates from pT (Y |X) to some extent while pS(X) and pT (X)
are quite similar; or the marginals where pS(X) deviates from pT (X), but the conditionals are
in agreement (Jiang and Zhai, 2007). As will be seen in the next section, the later is equivalent
to the problem of covariate shift (Shimodaira, 2000).

The domain adaptation problem has received considerable attention in the natural
language processing community, as very often one faces the situation where a large collection of
labeled data from a source domain is available for training, but we want our model to perform
well in a second target domain, for which very little data is available (Daume, 2007).

Domain adaptation can be considered distinct from multitask learning as it consists
of learning the same task but in different domains. It can, however, be treated as a special case
of multitask learning, where we have two tasks, one on each domain, and the class label sets
of these two tasks are the same. Without any change, existing multitask learning methods can
readily be applied if labeled data from the target domain is available.

Some recently proposed domain adaptation are essentially multitask learning algo-
rithms. In Daume (2007) a simple method for domain adaptation based on feature expansion in
proposed. The idea is to make a domain-specific copy of the original features for each domain.
An instance from the k-th domain is then represented by both the original features and the
specific features to the k-th domain. It can be shown that when linear classification algorithms
are used, this feature duplication based method is equivalent to decomposing the model param-
eter θk for the k-th domain into θc + θ′k, where θc is shared by all domains. This formulation
then is very similar to the regularized multitask learning method proposed by Evgeniou and
Pontil (2004).

Covariate Shift

A different assumption about the connection between source and target domain is
made in the covariate shift problem. Here, we assume that predictive function or the con-
ditionals remain unchanged in the source and target domain, pS(Y |X) = pT (Y |X), but the
distribution of the inputs (covariates) are different, pS(X) 6= pT (X) (Shimodaira, 2000). We
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Figure 2.6: [Best viewed in color.] Covariate shift problem. Conditionals in each domain are
the same (right) but the marginals, the covariates, are shifted (left). We observe that a linear
model estimated on the source data is completely different from a model based on target data,
even though the true function (conditional) is the same.

can say that covariate shift problem is a specific case of domain adaptation.
An illustrative example of covariate shift is shown in Figure 2.6. We observe that

the underlying conditional distribution is the same but the marginals are different.
In multitask learning we usually do not restrict the distributions of the tasks to be

the same, so it can be seen as a less restrictive problem than covariate shift. If we treat the
learning tasks of source and target domains as two different tasks, we can directly apply existing
multitask learning methods.

We must say that the discussed research areas and their overlapping with multitask
learning are very often interpreted differently by distinct research groups. Additionally, these
terms are sometimes used interchangeably.

Transfer Learning

Multitask Learning

Multilabel
classification

Multiple output
regression

Domain
adaptation

Covariate
shift

Figure 2.7: Venn diagram showing the overlapping between MTL and some related areas in the
machine learning community. Multitask learning methods can mostly be applied in problems
from those areas.

The main characteristics of each of these related areas can be summarized as follows:
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• Multitask Learning:

– Model the task relatedness;

– Learn all tasks simultaneously;

– Tasks may have different data/features.

• Transfer Learning:

– Define source and target domain;

– Learn on the source domain;

– Generalize on the target domain.

• Multilabel Classification:

– Model label dependence;

– Learn all classifiers simultaneously;

– Labels share the same data/features;

• Multiple output regression:

– Model output dependence;

– Learn all regressors simultaneously;

– Labels share the same data/features;

• Domain Adaptation:

– Define source and target domain;

– Different conditionals:
pS(X|Y ) 6= pT (X|Y );

– Similar marginals: pS(X) ≈ pT (X);

• Covariate Shift:

– Define source and target domain;

– Same conditionals: pS(X|Y ) = pT (X|Y );

– Different marginals: pS(X) 6= pT (X);

2.6 Multitask Learning can Hurt

In the initial work of multitask learning, Caruana already identified the possibility
of a multitask learning method to degenerate the performance of the learning tasks: “MTL is
a source of inductive bias. Some inductive biases help. Some inductive biases hurt. It depends
on the problem.” (Caruana, 1997). Later, both theoretical and experimental studies in many
domains confirmed his words. Since then, researchers have attempted to identify under which
conditions MTL strictly improves performance compared to single task learning. Advances in
theoretical studies have helped on this issue.

Aligned to what is found in the literature of multitask learning, we have experienced
and will discuss in the experimental sections, in Chapters 4, 5, and 6, that MTL methods clearly
pay off in situations where the number of samples is relatively small compared to the dimension
of the problem. As the number of training samples increases, its performance is equivalent to
single task learning. In scenarios where the tasks are completely unrelated, MTL usually does
not help, and may even hurt the performance. Methods such as those proposed in this research
are less susceptible to performance drop, as the task dependence is automatically identified,
based on a measure of relatedness, thus avoiding information sharing among unrelated tasks.
On the other extreme case, where all tasks are almost identical, simply performing a single task
with data samples combined from all tasks will perform similarly to any MTL method.

As a general advice, before applying an MTL method, it is important to investigate
the characteristics of the tasks we are dealing with. Domain knowledge usually helps on this
matter.
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2.7 Applications of MTL

The need for learning multiple related models simultaneously arises in many fields
of research. Additionally, some traditional machine learning problems were also transformed as
multitask learning problems, and then benefiting from the power of MTL methods. Examples
are multilabel classification and multiple output regression problems which can be decomposed
as a set of binary classification or single output regression problems and then multitask learning
methods can be used, such as in Luo et al. (2013) and Rai et al. (2012). Generally speaking, any
problem which requires solving multiple related tasks can be tackled with multitask learning
methods. In the following, we will present a set of fields that have been successfully applied
multitask learning methods.

In natural language processing (NLP), Collobert and Weston (2008) proposed a uni-
fied convolutional deep neural network architecture that learns features relevant to several NLP
tasks including part-of-speech tagging, chunking, named-entity recognition, learning a language
model and the task of semantic role-labeling. All tasks are learned jointly in a multitask learn-
ing setting. Multitask learning for phoneme recognition was presented in Seltzer and Droppo
(2013), where additionally to the classification task a secondary task using a shared represen-
tation was trained jointly. Three choices of secondary task were tested: the phone label, the
phone context, and the state context. In Bordes et al. (2014), a neural network was used to train
a semantic matching energy function via multitask learning across different knowledge sources
such as Wordnet, Wikipedia, ConceptNet, among others. The authors applied the model to
the problem of open-text semantic parsing.

In Bickel et al. (2008), a multitask learning method based on data samples sharing
was proposed to the problem of HIV therapy screening. Here, a task is to predict the outcome
(success or failure) of a therapy or combination of drugs for a given patient’s treatment history
and features of the viral genotype. The multitask learning methods were able to make predic-
tions even for drug combinations with few or no training examples and improved the overall
prediction accuracy.

Web search ranking problems from different countries was taken as a multitask learn-
ing problem in Chapelle et al. (2010). Each task is to learn a country-specific ranking function,
then learning various ranking functions jointly for multiple countries improved performance of
each country. Web page categorization was also studied under the multitask learning setting
in Chen et al. (2009), where the goal is to classify documents into a set of categories and the
classification of each category is a task. The tasks of predicting different categories may be
related.

Computer vision also took part of the advances in multitask learning. Face verifica-
tion for web image and video search was also posed as a multitask learning problem in Wang
et al. (2009). In Zhang et al. (2014), a deep neural network with multitask learning was pro-
posed for facial landmark detection, where the target of landmark detection is jointly learned
with a set of auxiliary tasks, including inferences of “pose”, “gender”, “wear glasses”, and “smil-
ing” detection. In fact, the marriage between deep neural network and multitask learning has
brought a significant advance is the fields of computer vision and image processing. Multilabel
image classification that exploits labels relationship through multitask learning settings were
studied in Huang et al. (2013) and Luo et al. (2013).

In medicine, multitask learning has been considered in multi-subject fMRI studies
(Rao et al., 2013). Functional activity is classified using brain voxels as features. A task is to
distinguish, at each point in time, which stimulus of a given subject was processed. Alzheimer’s
disease progression modeling was also studied from the multitask learning perspective and a
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task is seen from different ways. While Zhou et al. (2013) considered the prediction at each time
point as a task, Zhang and Shen (2012) looked at different tasks corresponding to prediction of
different variables.

Multitask learning has also being successfully applied to problems arising from com-
putational biology (Widmer and Rätsch, 2012) and bioinformatics (Xu and Yang, 2011). In
Widmer et al. (2010), a multitask learning based method was proposed to deal with the splice-
site prediction problem. Prediction for each organism was taken as a task. The hierarchical
structure associated with the taxonomy of the organisms was used as a guide for task informa-
tion sharing. Learning host-pathogen protein interactions in several diseases was tackled under
the multitask learning setting in Kshirsagar et al. (2013). A task in such scenario is the set of
host-pathogen protein interactions involved in one disease.

In signal processing, researchers have looked at problems with the multitask learning
lens. MTL based compressive sensing (CS) framework has been developed (Qi et al., 2008), (Ji
et al., 2009), where each CS measurement represents a sensing task. The basic tasks can be
posed as a sparse linear regression problem for each signal.

2.8 Chapter Summary

The goal of this chapter was to provide an introduction to multitask learning, a
machine learning paradigm which seeks to exploit the relatedness of tasks by learning them
jointly. We presented a survey on the existing MTL methods, categorizing them in terms of
their assumption on the task relationship and the information shared. Advances in theoretical
results in MTL have also been discussed aiming to precisely determine under which conditions
MTL methods are preferred. Additionally, we compared the multitask learning with related
fields within the machine learning realm.

Chapters 2 and 3 are devoted to provide the foundations on which the proposed
methods of Chapters 4, 5 and 6 are built on.
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Chapter 3
Dependence Modeling with Probabilistic
Graphical Models

“ The purpose of computation is insight, not numbers. ”
Richard Hamming

In this chapter, we review undirected graphical models - also known as Markov
Random Fields (MRFs), and explore modern methods for learning the structure of these models
in high-dimensions. We will focus on two popular instances of MRFs, namely Gaussian Markov
Random field (GMRF) and Ising Markov Random field (IMRF). While GMRF represents a
typical continuous MRF, the IMRF is commonly used to represent discrete MRFs. These are
simple models that are fully specified by their first two moments and have shown to be rich
enough for a wide range of applications. We also discuss an extension of Gaussian graphical
models for non-Gaussian data that is based on copula theory. As will be discussed in Chapter 4,
the structure of the MRFs will be used as a guide for information sharing between tasks in a
multitask learning setting.

3.1 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) provide a unifying framework for capturing
complex dependencies among random variables, and building large-scale multivariate statistical
models (Wainwright and Jordan, 2008). PGMs bring together graph and probability theory,
in which random variables are represented as nodes and edges indicate relationship among
variables. Exploiting structural properties of the graph can dramatically reduce the complexity
of statistical models as well as provide additional insights into the system under observation, for
example, by showing how different parts of the system interact. When the problem involves the
study of a large number of interacting variables, graphical models are particularly an appealing
tool. Recent advances in structure learning in high-dimensional graphical models have attracted
the interest of researchers, mainly for relationship discovery.

The main aspect of graphical models is that a collection of probability distributions
is factored according to the structure of an underlying graph. Concerning the direction of
the edges in the graph, two major families of PGMs are: directed graphical models (DGM)
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(a) Directed graphical model: node 5 is
conditionally independent on all other
nodes, given its parents 3 and 4.
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(b) Undirected graphical model: node
5 is conditionally independent on all
other nodes, given its neighborhood,
nodes 3, 4, 6, and 7.

Figure 3.1: Conditional independence interpretation in directed graphical models (a) and undi-
rected graphical models (b).

(or Bayesian networks) and undirected graphical models (UGM) also called Markov random
fields (MRFs). We will use the acronyms MRFs and UGM interchangeably in this chapter.
In fact, there is also a less common class of models, known as mixed directed and undirected
representation, such as the chain graphs (Lauritzen and Richardson, 2002; Drton, 2009).

In DGMs, the joint distribution of m random variables X = (X1, ..., Xm) is repre-
sented by a directed acyclic graph in which each node k, representing a random variable Xk,
receives directed edges from its set of parent nodes pa(Xk). The probabilistic interpretation
from the acyclic graph is that a random variable Xk is conditionally independent on all other
variables given the variables corresponding to its parent nodes. UGMs represent the joint dis-
tribution of a set of variables by an undirected graph and it is factored as a product of functions
over the variables in each maximal clique (fully-connected subgraphs). A random variable Xk is
conditionally independent of the random variables that are not connected to Xk (do not belong
to its neighborhood). See Figure 3.1 for an example. Details on UGMs are presented in the
next section.

Due to the absence of edge orientation, MRFs may be more suitable for some do-
mains as image analysis and spatial statistics. MRFs can represent certain dependencies that a
directed graphical model (Bayesian network) can not, such as cyclic dependencies, on the other
hand, it can not represent asymmetric dependencies, for example.

In the last decade, structure learning in MRFs have seen an enormous advance
motivated by the need of analyzing high-dimensional data such as fMRI, genomic, and social
networks, where usually one is also interested in studying how brain regions, genes, and people
are acting together. For discovering the dependence graph from a set of data samples, many
efficient algorithms have been proposed. These modern data-intensive methods will be discussed
in the next sections.

The problem of structure learning in undirected graphical models will appear nat-
urally from the MTL formulations proposed in Chapters 4 and 5. This graph will basically
encode the task dependencies structure. For this reason, in this chapter we will present an
overview of undirected graphical models.
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3.2 Undirected Graphical Models

Undirected graphical models, also known as Markov random fields (MRFs), are a
powerful class of statistical models that represent distributions over a large number of variables
using undirected graphs. The structure of the graph encodes Markov conditional independence
assumptions among the variables. MRF is a collection of m-variate distributions p(X) =
p(X1, ..., Xm), with discrete or continuous state space Xk ∈ X , that factorize over a graph G
(Wainwright and Jordan, 2008):

p(X) = p(X1, X2, ..., Xm) =
1

Z

∏
c∈CG

φc(Xc) (3.1)

where CG are the set of all maximal cliques of the graph G, i.e., the set of cliques that are not
contained within any other clique and Z =

∑
x

∏
c∈CG φc(Xc) is a normalization constant. The

semantics of the undirected graphical model is that a variable is conditionally independent of
all other variables given its neighbors in the graph. From the graph in Figure 3.1, it is possible
to say that node 5 is conditionally independent of all other nodes, given its neighborhood,
composed of nodes 3, 4, 6 and 7.

Based on the connection between conditional independence and the absent of edges
in the graph, the problem of assessing conditional independence among random variables be-
longing to the family of distribution of the form (3.1) reduces to the problem of estimating the
structure of the underlying undirected graph. This result is formally stated by the Hammersley-
Clifford theorem. The proof can be found in Besag (1974) and Lauritzen (1996).

Theorem 3.2.1 (Hammersley-Clifford) A positive distribution p(X) satisfies the conditional
independence properties of an undirected graph G iff p can be represented as a product of factors,
one per maximal clique, i.e.

p(X) =
1

Z(ω)

∏
c∈CG

φc(Xc|ωc) (3.2)

where C is the set of all (maximal) cliques of G, and the partition function Z(ω), which ensures
the overall distribution sums to 1, is given by

Z(ω) ,
∑
X

∏
c∈CG

φc(Xc|ωc). (3.3)

In general terms, the theorem states that any positive distribution whose conditional
independence properties can be represented by an undirected graphical model can be denoted
as a product of the clique potentials. Potential (or factor) is a non-negative function of its
arguments and the joint distribution is then defined to be proportional to the product of clique
potentials. We can say that Hammersley-Clifford theorem connects the probability theory with
the undirected graph theory.

Undirected graphical models, as a tool for capturing and understanding how parts of
the system interact to each other, have been applied to a wide spectrum of problems including
natural language processing (Manning and Schütze, 1999), image processing (Elia et al., 2003;
Felzenszwalb and Huttenlocher, 2006), genomics (Castelo and Roverato, 2006; Wei and Pan,
2010), and climate sciences (Ebert-Uphoff and Deng, 2012).

In the following we discuss in more details the two most popular instances of MRFs:
Gaussian-Markov random field and Ising-Markov random field. These are instances of MRFs
as they can be described in the form of equation (3.2) with specific potential functions (factors)
associated with the maximal cliques.
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3.2.1 Gaussian Graphical Models

Gaussian graphical models (GGMs) or Gaussian-Markov random fields are the most
popular continuous MRF, in which the joint distribution of all the random variables is charac-
terized by a multivariate Gaussian distribution.

Let X = (X1, . . . , Xm) be an m-dimensional multivariate Gaussian random variable
with zero mean, µ = 0, and inverse covariance (or precision matrix) Ω = Σ−1. The joint
distribution is defined by an undirected graph G = (V , E), where the vertex set V represents
the m covariates of X and edge set E represents the conditional dependence relations between
the covariates of X. If Xi is conditionally independent of Xj given the other variables, then
the edge (i, j) is not in E . The GGM probability density is given by

p(x|Ω) =
1

(2π|Ω|)m/2
exp

(
−1

2
x>Ωx

)
. (3.4)

The missing edges in the graph correspond to zeros in the precision matrix given
by Ωi,j = 0 ∀(i, j) /∈ E (Lauritzen, 1996). Then, the graphical model selection is equivalent
to estimating the pattern of the precision matrix Ω, that is, the set E(Ω∗) := {i, j ∈ V | i 6=
j,Ω∗ij 6= 0}.

One can clearly see that GGM is a particular instance of MRFs, as it can be written
in the form of (3.1)

p(X|Ω) =
1

Z(Ω)

∏
(i,j)∈E

φij(Xi, Xj)
∏
j

φj(Xj) (3.5a)

φij(Xi, Xj) = exp

(
−1

2
XiΩijXj

)
(3.5b)

φj(Xj) = exp

(
−1

2
ΩjjX

2
j + ηjXj

)
(3.5c)

where η = (η1, ..., ηm) are parameters related to the mean of the random variables, η = Ωµ.
As the mean is assumed to be zero, without loss of generality, η is also zero.

It is also worthy mentioning that in the case of GGM, the potentials are defined
pairwise, i.e., the random variables interact only in pairs (maximal clique c = 2). GGM is then
said to belong to the class of pairwise MRFs.

Figure 3.2 presents an example of a sparse precision matrix and its graph repre-
sentation. The zero entries in the matrix indicate conditional independence between the two
corresponding random variables (nodes), which is associated with the lack of an edge in the
graph.

Ω =


0.12 −0.01 0 −0.05
−0.01 0.11 −0.02 0

0 −0.02 0.11 −0.03
−0.05 0 −0.03 0.13


(a)

1 2

3 4

(b)

Figure 3.2: For a Gaussian graphical model, the zero entries of the precision (or inverse covari-
ance) matrix (left) correspond to the absent of edges in the graph (right): for any pair (i, j)
such that i 6= j, if (i, j) /∈ E , then Ωij = 0.
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Another important information contained in a precision matrix is the partial correla-
tion. Partial correlation coefficient between two variables Xi and Xj measures their conditional
correlation given the values of the other variables X\i,j. One can say that partial correlation be-
tween two variables describes their relationship while removing the effect of all other variables.
It is computed by normalizing the off-diagonal entries of the precision matrix

rij = − Ωij√
ΩiiΩjj

(3.6)

Partial correlation, then, may unveil a false correlation interpretation between two variables
that may be related to each other simply because they are related to a third variable.

Structure Estimation in GGM

The simplest approach to estimate precision matrix Ω is via maximum likelihood.
Given that we have n i.i.d. samples {xi}ni=1 ∈ Rd from a m-dimensional Gaussian distribution
(3.4), the log-likelihood can be written as

L(Ω) ∝ log |Ω| − tr(SΩ) (3.7)

where Ω = Σ−1 is the precision matrix, and S is the empirical covariance matrix

S =
1

n

n∑
i=1

(xi − x̄)>(xi − x̄) , (3.8)

where x̄ is the sample mean, x̄ = 1
n

∑n
i=1 xi. However, when maximizing the log-likelihood

we have to constrain Ω to lie in the cone of positive semidefinite matrices, that is, Ω ∈ Sm+ .
Additionally, even if the underlying (true) precision matrix is sparse, the maximum likelihood
estimation of the precision matrix will not be sparse. Then, a procedure to enforce zeros in the
matrix is necessary. The task of estimating a sparse precision matrix is called in statistics as
inverse covariance selection (Dempster et al., 1977).

Classical approaches attempted to explicitly identify the correct set of non-zero ele-
ments beforehand and then estimated the non-zero elements (Dempster et al., 1977; Lauritzen,
1996). However, such methods are impractical for high-dimensional problems and, due to their
discrete nature, these procedures often leads to instability of the estimator (Breiman and Fried-
man, 1997).

For high-dimensional problems (n � m), graphical models estimators have been
based on maximum log-likelihood with sparsity-encouraging regularization. Meinshausen and
Buhlmann (2006) proposed a neighborhood selection that estimates the conditional indepen-
dence restrictions separately for each node in the graph. Each node is linearly regressed with
an `1-penalization, a Lasso formulation (Tibshirani, 1996), on the remaining nodes; and the
location of the non-zero regression weights is taken as the neighborhood estimate of that node.
The neighborhoods are then combined, by either an OR or an AND rule, to obtain the full
graph.

In the same spirit of a Lasso estimator, many authors have considered minimizing
the `1-penalized negative log-likelihood (Banerjee et al., 2008; Yuan, 2010; Friedman et al.,
2008):

L(Ω) = log|Ω| − tr(SΩ) + λ‖Ω‖1. (3.9)
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This formulation is convex and always have a unique solution (Boyd and Vandenberghe, 2004).
Strong statistical guarantees for this estimator have been established. We refer interested
readers to Ravikumar et al. (2010) and references therein.

We seek to trade-off the log-likelihood of the solution with the number of zeros in
its inverse. The trade-off is controlled by the regularization parameter λ. Figure 3.3 shows
an example of the application of graphical lasso for the prostate cancer dataset (Hastie et al.,
2009). As we decrease λ, fewer non-zero entries (edges in the undirected graph) appear.

λ = 0.35 , nedges=  36
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Figure 3.3: Effect of the amount of regularization imposed by changing the parameter λ. The
larger the value of λ, the fewer the number of edges in the undirected graph (non-zeros in the
precision matrix).

In Lasso-type problems the choice of the penalization parameter λ is commonly
made by cross-validation. In K-fold cross-validation, the training data is divided in K mutually
exclusive partitions Dk, k = 1, ..., K. Let LDk

(λ) be the empirical loss on the observations in
the k-th partition when constructing the estimator on the set of observations different from k,
and let Lcv(λ) be the empirical loss under K-fold cross-validation,

Lcv(λ) =
1

K

K∑
k=1

LDk
(λ) (3.10)

that is, the average of the empirical loss over the K folds. The penalty parameter λ̂ is chosen
as minimizers of Lcv(λ),

λ̂ = arg min
λ∈[0,λmax]

Lcv(λ) (3.11)

where [0,λmax] with λmax ∈ R is the range of values allowed for λ. A value of K between 5 and
10 is commonly used.
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The optimization problem associated with the `1-regularized log-likelihood formu-
lation has been tackled from different perspectives. Banerjee et al. (2008) adapted interior
point and Nesterov’s first order methods for the problem. An Alternating Direction Method of
Multipliers – ADMM (Boyd et al., 2011) can also be used, in which the non-smooth `1 term is
decoupled from the smooth convex terms in the objective (3.9). ADMM methods have shown
fast converge rates. Yuan (2010) employed the MAXDET algorithm (Vandenberghe et al.,
1998) to solve the problem. Friedman et al. (2008) proposed the Graphical Lasso algorithm
that builds on coordinate descent methods.

Yuan (2010) also explore the neighborhood selection idea, but the local neighbor-
hoods for each node is learned via the Dantzig selector estimator (Candes and Tao, 2007), which
can easily be recast as a convenient linear program (Candes and Tao, 2007), making it suitable
for high-dimensional problems. The method is called neighborhood Dantzig selector. For each
node, the method solves the `1-regularization problem defined as follows

minimize
β,β0

‖β‖1

subject to ‖S−i,i − S−i,−iβ‖∞ ≤ λ .
(3.12)

where β ∈ Rm−1, β0 ∈ R, we denote by S−i,j the i-th column vector of S with the j-th entry
removed and S−i,−j is the sub-matrix of S with its i-th row and j-th column removed. Since
each local neighborhood is learned separately, the estimated precision matrix is not guaranteed
to be symmetric. The authors proposed a post-processing adjustment of the estimated matrix
seeking the closest symmetric matrix in the sense of `1 norm.

A related regularized convex program to solve for sparse GGM structure learning is
the CLIME estimator (Cai et al., 2011), obtained by solving the following optimization problem

minimize
Ω

‖Ω‖1

subject to ‖SΩ− Im‖∞ ≤ λ .
(3.13)

that is proved to be equivalent to solving m optimization problems of the form

minimize
β̂∈Rm

‖β̂‖1

subject to ‖Sβ̂ − ei‖∞ ≤ λn .
(3.14)

where ei is a unit vector with 1 in the i-th coordinate and 0 elsewhere. In other words,
Ω̂ = [β̂1, β̂2, ..., β̂m]. The optimization problem 3.14 can easily be solved by linear programming
methods. Symmetric condition on the estimated Ω matrix is not imposed, then the authors
also presented a simple symmetrization procedure: between Ωst and Ωts, the one with smaller
magnitude is taken.

Large-scale distributed CLIME (Wang et al., 2013) is a column-blockwise Alter-
nating Direction Method of Multipliers (ADMM) (Boyd et al., 2011) to solve CLIME. The
algorithm only involves element-wise operations and parallel matrix multiplications, thus being
suitable for running in graphics processing units (GPUs). The authors showed that the method
can scale to millions of dimensions and trillions of parameters.

Other authors used different sparsity inducing regularizers other than `1, such as
smoothly clipped absolute deviation (SCAD) penalty (Fan et al., 2009). This regularizer at-
tempts to alleviate the bias introduced by `1-penalization (Fan and Li, 2001).
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3.2.2 Ising Model

Ising model or Ising-Markov random field is a mathematical model originally pro-
posed to study the behavior of atoms in ferro-magnetism (Ising, 1925). Each atom has a
magnetic moment pointing either up or down, called spin. The atoms are arranged in an
m-dimensional lattice, allowing only direct neighbors atoms to interact to each other.

From a probabilistic graphical model perspective, we can see the atoms as binary
random variables Xi ∈ {−1,+1}. The interaction structure among the atoms can be seen as
an undirected graphical model. Let G = (V , E) be a graph with vertex set V = {1, 2, ...,m} and
edge set E ⊂ V ×V , and a parameter Ωij ∈ R. The Ising model on G is a Markov random field
with distribution given by

p(X|Ω) =
1

Z(Ω)
exp

 ∑
(i,j)∈E

ΩijXiXj

 (3.15)

where the partition function is

Z(Ω) =
∑

X∈{−1,1}m
exp

 ∑
(i,j)∈E

ΩijXiXj

 (3.16)

and Ω ∈ Rm×m is a matrix with all parameters for each variable i, ωi, as columns, i.e.,

Ω =

 ω1 ω2 . . . ωm

 . (3.17)

Thus, the graphical model selection problem becomes: Given n i.i.d samples {xi}ni=1

with distribution given by (3.15), estimate the edge set E .
The joint distribution associated with the Ising model, (3.15), can also be written

in terms of product of potential functions, as in the form of 3.1, which is given by

p(x|Ω) =
1

Z(Ω)

∏
(i,j)∈E

exp (Ωijxixj) (3.18)

where the pairwise potential function is φ(xi, xj) = exp(Ωijxixj), for a given set of parameters
Ω = {Ωij|i, j ∈ E}.

Although in classical Ising model each particle is bonded to the next nearest neighbor
as an m-dimensional lattice, in many other applications general higher-order Ising models have
been used. Figure 3.4 shows examples of both settings. High-order Ising models can be used to
model arbitrary pairwise dependence structure among binary random variables. The problem
of estimating the dependence graph of an Ising-MRF from a set of i.i.d. data samples is known
as Ising model selection (Ravikumar et al., 2010). The next section discuss the state-of-the-art
methods for the problem.

Structure Learning in Ising Models

Ravikumar et al. (2010) proposed an efficient neighborhood selection-based method
for infering the underlying undirected graph. Basically, it involves performing an `1-regularized
logistic regression on each variable while considering the remaining variables as covariates. The
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(a) Nearest neighbors
interactions.

(b) Including higher-order
interactions.

Figure 3.4: Ising-Markov Random field represented as an undirected graph. By enforcing
sparsity on Ω, graph connections are dropped out.

sparsity pattern of the regression vector is then used to infer the underlying graphical structure.
For all variables r = 1, ...,m, the corresponding parameter ωr is obtained by

ωr = arg min
ωr

{
logloss(X\r, Xr,ωr) + λ‖ωr‖1

}
(3.19)

where logloss(·) is the logistic loss function and λ > 0 is a trade-off parameter. Note that each
Lasso problem can run in parallel, then allowing to scale to problems with large number of
labels.

To show the structure recovery capability of the method, a slightly different notion
of edge recovery is studied, called signed edge recovery, where given a graphical model with
parameter Ω, the signed edge set Ē is

Ē :=

{
sign(ωrs), if (r, s) ∈ E
0, otherwise.

, (3.20)

where sign(·) is the sign function. The signed edge set Ē can be represented in terms of
neighborhood sets. For a given vertex r, its neighborhood set is given by N(r) := {s ∈ V|(r, s) ∈
Ē} along with the correct signs sign(ωrs),∀s ∈ N(r). In other words, the neighborhood set of
a vertex r will be those vertices s corresponding to variables whose parameter ωrs is non-zero in
the regularized logistic regression. Ravikumar et al. (2010) showed that recovering the signed
edge set Ē of an undirected graph G is equivalent to recovering the neighborhood set for each
vertex.

It is noteworthy that the method in Ravikumar et al. (2010) can only handle pairwise
interactions (clique factors of size c = 2). Jalali et al. (2011) presented a structure learning
method for a more general class of discrete graphical models (clique factors of size c ≥ 2). Block
`1-regularization is used to select clique factors. Ding et al. (2011) also considered high-order
interactions (c ≥ 2) among random variables, but conditioned to another random vector (e.g.
observed features), similar to the ideas of conditional random fields.

A method for recovering the graph of a “hub-networked” Ising model is presented
in Tandon and Ravikumar (2014). In these particular models, the graph is composed of few
nodes with large degrees (connected edges), situation where state-of-the-art estimators scale
polynomially with the maximum node-degree. The authors showed strong statistical guarantees
in recovering hub-structured graphs even with small sample size.

Since the local dependencies are stronger, they can be predominant when estimating
the graph. Then the neighborhood dependence (short-range) possibly will hide other long-
range dependencies. Most of the methods just mentioned can not get provable recovery under
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long-range dependencies (Montanari and Pereira, 2009). Recently, Bresler (2015) presented an
algorithm for Ising model with pairwise dependencies and bounded node degree which can also
capture long-range dependencies. However, while theoretically proven to be polynomial time,
the constants associated with sample complexity and runtime can be quite large.

3.3 Graphical Models for Non-Gaussian Data

In the Gaussian graphical model the joint probability density function is represented
by a multivariate Gaussian distribution. The Gaussian assumption, however, can be too re-
strictive for many real problems. Two relevant assumptions are that (i) marginal distributions
are also Gaussian, that is, if X ∼ Nm(µ,Σ), then Xi ∼ N (µi, σi), i = 1, ...,m.; and (ii) as any
elliptical distribution, the structure dependence of its marginals is linear.

The first assumption can be easily violated in reality, thus resulting in a poor ap-
proximation for physical variables of interest. The linear dependence assumption is not capable
of unveil possible non-linear correlations among variables and may induce misleading conclu-
sions. A promising candidate to overcome such Gaussian issues is the copula model (Durante
and Sempi, 2010; Nelsen, 2013). Copulas weaken both of the described assumptions as they
allow appropriate marginal distributions to be selected freely. Additionally, they can model
rank-based non-linear dependence between random variables.

3.3.1 Copula Distribution

Copulas are a class of flexible multivariate distributions that are expressed by its
univariate marginals and a copula function that describes the dependence structure between
the variables. Consequently, copulas decompose a multivariate distribution into its marginal
distributions and the copula function connecting them. Copulas are founded on Sklar (1959)
theorem which states that: any m-variate distribution f(V1, ..., Vm) with continuous marginal
functions f1, ..., fm can be expressed as its copula function C(·) evaluated at its marginals, that
is, f(V1, ..., Vm) = C(f1(V1), ..., fm(Vm)) and, conversely, any copula function C(·) with marginal
distributions f1, ..., fm defines a multivariate distribution. Several copulas have been described,
which typically exhibit different dependence properties. Here, we focus on the Gaussian copula
that adopts a balanced combination of flexibility and interpretability , thus attracting a lot of
attention (Xue and Zou, 2012).

Gaussian copula distributions

The Gaussian copula CΣ0 is the copula of an m-variate Gaussian distribution Nm(0,
Σ0) with m×m positive definite correlation matrix Σ0:

C(V1, ..., Vm; Σ0) = ΦΣ0

(
Φ−1(V1), ...,Φ−1(Vm)

)
, (3.21)

where Φ−1 is the inverse of a standard normal distribution function and ΦΣ0 is the joint dis-
tribution function of a multivariate normal distribution with mean vector zero and covariance
matrix equal to the correlation matrix Σ0. Note that without loss of generality, the covariance
matrix Σ0 can be viewed as a correlation matrix, as observations can be replaced by their
normal-scores. Therefore, Sklar’s theorem allows to construct a multivariate distribution with
non-Gaussian marginal distributions and the Gaussian copula. It is worth mentioning that even
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though the marginals are allowed to vary freely (non-Gaussian), the joint distribution is still
Gaussian, as the marginals are connected by the Gaussian copula function.

A more general formulation of the Gaussian copula is the semiparametric Gaussian
copula (Tsukahara, 2005; Liu et al., 2009; Xue and Zou, 2012), which allows the marginals to
follow any non-parametric distribution.

Definition 3.3.1 (Semiparametric Gaussian copula models) Let f = {f1, ..., fm} be a set of
continuous monotone and differentiable univariate functions. An m-dimensional random vari-
able V = (V1, ..., Vm) has a semiparametric Gaussian Copula distribution if the joint distribution
of the transformed variable f(V ) follows a multivariate Gaussian distribution with correlation
matrix Σ0, that is, f(V ) = (f1(V1), ..., fm(Vm))> ∼ Nm(0,Σ0).

From the definition we notice that the copula does not have requirements on the marginal
distributions as long the monotone continuous functions f1, ..., fm exist. The semiparametric
Gaussian copula model has also been called as non-paranormal distribution in Liu et al. (2009)
and in Liu et al. (2012).

To exemplify the broader spectrum of possible densities functions that can be rep-
resented by the semiparametric Gaussian copula distribution family, figure 3.5 shows examples
of densities of 2-dimensional semiparametric Gaussian copulas. The transformation functions
are from three different families of monotonic functions

fα(x) = sign(x)|x|αi (3.22a)

gα(x) = bxc+
1

1 + exp{−α(x− bxc − 1/2)}
, (3.22b)

hα(x) = x+
sin(αx)

α
(3.22c)

where ai and bi are constants, the covariance is

Σ =

[
1 0.5

0.5 1

]
(3.23)

and zero mean. Clearly, the semiparametric Gaussian copula distribution are more flexible than
an ordinary Gaussian distribution.

Parameter estimation in Semiparametric Gaussian Copula models

The semiparametric Gaussian copula model is completely characterized by two un-
known parameters: the correlation matrix Σ0 (or its inverse, the precision matrix Ω0 = (Σ0)−1)
and the marginal transformation functions f1, ..., fm. The unknown marginal distributions can
be estimated by existing nonparametric methods. However, as will be seen next, when esti-
mating the dependence parameter is the ultimate target, one can directly estimate Ω0 without
explicitly computing the functions.

Let Z = (Z1, ..., Zm) = (f(V1), ..., f(Vm)) be a set of latent variables. By the as-
sumption of joint normality of Z, we know that Ω0

ij = 0 ⇐⇒ Zi ⊥⊥ Zj|Z\{i,j}. Interestingly,
Liu et al. (2009) showed that Zi ⊥⊥ Zj|Z\{i,j} ⇐⇒ Vi ⊥⊥ Vj|V\{i,j}, that is, variables V and Z
share exactly the same conditional dependence graph. As we focus on sparse precision matrix,
to estimate the parameter Ω0 we can resort to the `1-penalized maximum likelihood method,
the graphical Lasso problem (3.9).
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Figure 3.5: Examples of semiparametric Gaussian copula distributions. The transformation
functions are described in (3.22). One can clearly see that it can represent a wide variety of
distributions other than Gaussian. Figures adapted from Lafferty et al. (2012).

Let r1i, ..., rni be the rank of the samples from variable Vi and the sample mean
r̄j = 1

n

∑n
i=1 rij = n+1

2
. We start by reviewing the Spearman’s ρ and Kendal’s τ statistics:

(Spearman’s rho) ρ̂ij =

∑n
t=1(rti − r̄i)(rtj − r̄j)√∑n

t=1(rti − r̄i)2 ·
∑n

t=1(rtj − r̄j)2
, (3.24a)

(Kendall’s tau) τ̂ij =
2

n(n− 1)

∑
1≤t≤t′≤n

sign
(

(vti − vt′i)(vtj − vt′j)
)
. (3.24b)

We observe that Spearman’s ρ is computed from the ranks of the samples and Kendall’s τ
correlation is based on the concept of concordance of pairs, which in turn is also computed
from the ranks ri. Therefore, both measures are invariant to monotone transformation of
the original samples and rank-based correlations such as Spearman’s ρ and Kendal’s τ of the
observed variables V and the latent variables Z are identical. In other words, if we are only
interested in estimating the precision matrix Ω0, we can treat the observed variable V as the
unknown variable Z, thus avoiding estimating the transformation functions f1, ..., fm.

To connect Spearman’s ρ and Kendal’s τ rank-based correlation to the underlying
Pearson correlation in the graphical Lasso formulation (3.9) of the inverse covariance selection
problem, for Gaussian random variables a result, due to Kendall (1948) is used:

Ŝρij =

{
2 sin

(
π
6
ρ̂ij
)
, i 6= j

1 , i = j
(3.25)

Ŝτij =

{
sin
(
π
2
τ̂ij
)
, i 6= j

1 , i = j.
(3.26)
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We then replace S in (3.9) by Ŝρ or Ŝτ and any method for precision matrix esti-
mation discussed in Section 3.2.1 can be applied.

As shown in Liu et al. (2012), the final graph estimations based on Spearman’s ρ
and Kendal’s τ statistics have similar theoretical performance. Compared with the Gaussian
graphical model (3.9), the only additional cost of the SGC model is the computation of the
m(m− 1)/2 pairs of Spearman’s ρ or Kendal’s τ statistics, for which efficient algorithms have
complexity O(n log n).

Even though estimating the graph does not require the learning of the marginal
transformation fi’s, Liu et al. (2012) also presented a simple procedure to estimate such func-
tions, based on the empirical distribution function of X. The authors show that the estimate
transformation function f̂i converges in probability to the true function fi. For more details see
Section 3.3 of the aforementioned paper.

Liu et al. (2012) suggested that the SGC models can be used as a safe replacement
of the popular Gaussian graphical models, even when the data are truly Gaussian.

Other copula distributions also exist, such as the Archimedean class of copulas
McNeil and Nešlehová (2009), which are useful to model tail dependence and heavy tail dis-
tributions. But these are not discussed here. Nevertheless, Gaussian copula is a compelling
distribution for expressing the intricate dependency graph structure.

3.4 Chapter Summary

We have presented an overview of probabilistic graphical models and discussed
how conditional independence is interpreted in both directed graphical models (also known
as Bayesian networks) and undirected graphical models (also known as Markov random field
- MRF). The latter is the focus of this chapter. We discussed in more details the two most
popular instances of MRFs: Gaussian Graphical models (or Gaussian-Markov random field)
and Ising-Markov random field.

The objective of this chapter was to provide the tools to measure and capture con-
ditional independence of random variables in Markov random fields. We reviewed the most
recent methods for structure inference from a set of data samples. We also discussed a graphi-
cal model for non-Gaussian data that is based on the copula theory. With a small increase in
computational cost, Gaussian copula models can be used to examine dependence beyond linear
correlation and Gaussian marginals, providing a higher degree of flexibility.

These models and learning algorithms will be fundamental when we will discuss the
hierarchical Bayesian model for multitask learning in Chapter 4, which is one of the contribu-
tions of this thesis. The problem of estimating the structure of an undirected graphical model
will raise naturally from the hierarchical Bayesian modeling.



Part II

Multitask with Sparse and Structural
Learning
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Chapter 4
Sparse and Structural Multitask Learning

“ You never change things by fighting the existing reality. To change some-
thing, build a new model that makes the existing model obsolete. ”

Richard Buckminster Fuller

In this chapter, we present a novel family of models for MTL capable of learning
the structure of tasks relationship. The model is applicable to regression problems such as
energy demand, stock market and climate change forecasting; and classification problems like
object recognition, speaker authentication/identification, document classification, and so on.
More specifically, we consider a joint estimation problem of the task relationship structure and
the individual task parameters, which is solved using alternating minimization. The task re-
lationships revealed by structure learning is founded on recent advances in Gaussian graphical
models endowed with sparse estimators of the precision (inverse covariance) matrix. An exten-
sion to include flexible Gaussian copula models that relaxes the Gaussian marginal and linear
dependence among marginals assumption is also proposed. We illustrate the effectiveness of
the proposed model on a variety of synthetic and benchmark datasets for regression and clas-
sification. We also consider the problem of combining Earth System Model (ESM) outputs for
better projections of future climate, with focus on projections of temperature by combining
ESMs in South and North America, and show that the proposed model outperforms several
existing methods for the problem.

4.1 Introduction

Much of the existing work in MTL assumes the existence of a priori knowledge
about the task relationship structure. However, in many problems there is only a high level
understanding of those relationships, and hence the structure of the task relationship needs to be
estimated from the data. Recently, there have been attempts to explicitly model the relationship
and incorporate it into the learning process (Zhang and Yeung, 2010; Zhang and Schneider, 2010;
Yang et al., 2013). In the majority of these methods, the tasks dependencies are represented as
unknown hyper-parameters in hierarchical Bayesian models and are estimated from the data.
As will be discussed in Section 4.3, many of these methods are either computationally expensive
or restrictive on dependence structure complexity.
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In structure learning, we estimate the (conditional) dependence structures between
random variables in a high-dimensional distribution, and major advances have been achieved
in the past few years (Banerjee et al., 2008; Yuan, 2010; Cai et al., 2011; Wang et al., 2013).
In particular, assuming sparsity in the conditional dependence structure, i.e., each variable is
dependent only on a few others, there are estimators based on convex (sparse) optimization
which are guaranteed to recover the correct dependence structure with high probability, even
when the number of samples is small compared to the number of variables.

In this chapter, we present a family of models for MTL, applicable to regression
and classification problems, which are capable of learning the structure of task relationships
as well as parameters for individual tasks. The problem is posed as a joint estimation where
parameters of the tasks and relationship structure among tasks are learned using alternating
minimization.

The structure is learned by imposing a prior over either the task (regression or
classification) parameters (Section 4.2.3) or the residual error of regression (Section 4.2.7). By
imposing such a prior we can make use of a variety of methods proposed in the structure learning
literature (see Chapter 3) to estimate task relationships. The formulation can be extended to
Gaussian copula models (Liu et al., 2009; Xue and Zou, 2012), which are more flexible as it
does not rely on strict Gaussian assumptions and has shown to be more robust to outliers. The
resulting estimation problems are solved using suitable first order methods, including proximal
updates (Beck and Teboulle, 2009) and alternating direction method of multipliers (Boyd et al.,
2011). Based on our modeling, we show that MTL can benefit from advances in the structure
learning area. Moreover, any future development in the area can be readily used in the context
of MTL.

The proposed Multitask Sparse Structure Learning (MSSL) approach has important
practical implications: given a set of tasks, one can just feed the data from all the tasks without
any knowledge or guidance on task relationship, and MSSL will figure out which tasks are
related and will also estimate task specific parameters. Through experiments on a wide variety
of datasets for multitask regression and classification, we illustrate that MSSL is competitive
with and usually outperforms several baselines fom the existing MTL literature. Furthermore,
the task relationships learned by MSSL are found to be accurate and consistent with domain
knowledge on the problem.

In addition to evaluation on synthetic and benchmark datasets, we consider the
problem of predicting air surface temperature in South and North America. The goal here is
to combine outputs from Earth System Models (ESMs) reported by various countries to the
Intergovernmental Panel on Climate Change (IPCC), where the regression problem at each
geographical location forms a task. The models that provided better projections in the past
(training period) will have larger weights, and the hope is that outputs from skillful models in
each region can be more reliable for future projections of temperature. MSSL is able to identify
geographically nearby regions as related tasks, which is meaningful for temperature prediction,
without any previous knowledge of the spatial location of the tasks, and outperforms baseline
approaches.

4.2 Multitask Sparse Structure Learning

In this section we describe our Multitask Sparse Structure Learning (MSSL) method.
As our modeling is founded on structure estimation in Gaussian graphical models, we first
introduce the associated problem before presenting the proposed method.
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4.2.1 Structure Estimation in Gaussian Graphical models

Here we describe the undirected graphical model used to capture the underlying
linear dependence structure of our multitask learning framework.

Let V = (V1, . . . , Vm) be an m-variate random vector with joint distribution p. Such
distribution can be characterized by an undirected graph G = (V , E), where the vertex set V
represents the m covariates of V and edge set E represents the conditional dependence relations
between the covariates of V . If Vi is conditionally independent of Vj given the other variables,
then the edge (i, j) is not in E . Assuming V ∼ Nm(0,Σ), the missing edges correspond to
zeros in the inverse covariance matrix or precision matrix given by Σ−1 = Ω, i.e., (Σ−1)ij =
0 ∀(i, j) /∈ E (Lauritzen, 1996).

Classical estimation approaches (Dempster, 1972) work well when m is small. Given,
that we have n i.i.d. samples v1, . . . , vn from the distribution, the empirical covariance matrix
is

Σ̂ =
1

n

n∑
i=1

(vi − v̄)>(vi − v̄) (4.1)

where v̄ = 1
n

∑n
i=1 vi. However, when m > n, Σ̂ is rank-deficient and its inverse cannot be used

to estimate the precision matrix Ω. Nonetheless, for a sparse graph, i.e. most of the entries in
the precision matrix are zero, several methods exist to estimate Ω (Friedman et al., 2008; Boyd
et al., 2011).

4.2.2 MSSL Formulation

For ease of exposition, let us consider a simple linear model for each task:

yk = Xkθk + εk (4.2)

where θk is the parameter vector for task k and εk denotes the residual error. The proposed
MSSL method estimates both the task parameters θk for all tasks and the structure dependence,
based on some information from each task. Further, the dependence structure is used as
inductive bias in the θk learning process, aiming at improving the generalization capability of
the tasks.

We investigate and formalize two ways of learning the relationship structure (a
graph indicating the relationship among the tasks), represented by Ω: (a) modeling Ω from
the task specific parameters θk,∀k = 1, ...,m and (b) modeling Ω from the residual errors
εk,∀k = 1, ...,m. Based on how we model Ω, we propose p-MSSL (from tasks parameters) and
r-MSSL (from residual error). Both models are discussed in the following sections.

At a high level, the estimation problem in such MSSL approaches takes the form:

minimize
Θ,Ω

L(X, Y ; Θ) +B(Θ,Ω) +R1(Θ) +R2(Ω)

subject to Ω � 0 .
(4.3)

where Θ ∈ Rd×m is a matrix whose columns are the task parameter vectors, L(·) denotes
suitable task specific loss function, B(·) is the inductive bias term, and R1(·) and R2(·) are
suitable sparsity inducing regularization terms. The interaction between parameters θk and the
relationship matrix Ω is captured by the B(·) term. Notably, when Ωk,k′ = 0, the parameters θk
and θk′ have no influence on each other. Sections 4.2.3 to 4.2.7 delineate the modeling details
behind MSSL algorithms and how it leads to the solution of the optimization problem in (4.3).
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4.2.3 Parameter Precision Structure

If the tasks are unrelated, one can learn the columns of the coefficient matrix Θ
independently for each of the m tasks. However, when there exist relationships among the m
tasks, learning the columns of Θ independently fails to capture these dependencies. In such a
scenario, we propose a hierarchical Bayesian model over the tasks, where the task relationship
is naturally modeled through the precision matrix Ω ∈ Rm×m of a common prior distribution.
Relatedness is measured in terms of pairwise partial correlations between tasks.

Before entering into details of the MSSL formulation, let us set clearly the meaning
of the rows and columns of matrix Θ. Columns are a set of d-dimensional vectors θ1,θ2, ...,θm
corresponding to the parameters of each task. Rows are the features across all tasks, denoted
by θ̂1, θ̂2, ..., θ̂d. This representation is shown below.

Θ =

 θ1 θ2 . . . θm


Θ =


θ̂1

θ̂2
...

θ̂d


In the parameter precision structure based MSSL (p-MSSL) model we assume that

the features across all tasks are drawn from a prior multivariate Gaussian distribution with zero
mean and covariance matrix Σ, i.e. θ̂j ∼ N (0,Σ) ,∀j = 1, ..., d, where Σ−1=Ω. That is, the rows
of Θ are samples from the prior distribution. The problem of interest is to estimate both the
parameters θ1, . . . ,θm and the precision matrix Ω. By imposing such a prior over features across
multiple tasks (rows of Θ), we are capable of explicitly estimating the dependency structure
among the tasks via the precision matrix Ω.

With a multivariate Gaussian prior over the rows of Θ, its posterior can be written
as

p (Θ|X, Y,Ω)︸ ︷︷ ︸
posterior

∝
m∏
k=1

nk∏
i=1

p
(
yik
∣∣xik,θk)︸ ︷︷ ︸

likelihood

d∏
j=1

p
(
θ̂j|Ω

)
︸ ︷︷ ︸

prior

, (4.4)

where the first term in the right hand side denotes the conditional distribution of the response
given the input and parameters, and the second term denotes the prior over features across all
tasks. It is worth noting that the likelihood is in function of the task parameters (columns of
Θ), while the prior is in function of the features across tasks (rows of Θ).

We consider the penalized maximization of (4.4), assuming that the parameter ma-
trix Θ and the precision matrix Ω are sparse, i.e., contain few non-zero elements. In the
following, we provide two specific instantiations of this model with regard to the conditional
distribution. First, we consider a Gaussian conditional distribution, wherein we obtain the well
known least squares regression problem. Second, for discrete labeled data, choosing a Bernoulli
conditional distribution leads to a logistic regression problem.

In order to learn the dependency between the coefficients of different tasks, we
assume that the task relationship is modeled as the graph G = (V , E) where for any edge (i, j)
∈ V if (i, j) ∈ E then the coefficients θi and θj between tasks i and j are dependent.

Least Squares Regression

Assume that

P
(
yik
∣∣xik,θk) = N1

(
yik
∣∣θ>k xik, σ

2
k

)
, (4.5)
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where it is considered for ease of exposition that the variance of the residuals σ2
k = 1, ∀k =

1, ...,m, though it can be incorporated in the model and learned from the data. The posterior
distribution of Θ is, then, given by

p
(

Θ|X, Y,Ω
)
∝

m∏
k=1

nk∏
i=1

N
(
yik|θ>k xik, σ

2
k

) d∏
j=1

N
(
θ̂j|0,Ω

)
.

∝
m∏
k=1

Nk∏
i=1

1

2σ2
k

exp
{
− 1

2σ2
k

(yik − θ>k xik)
2
} d∏
j=1

|Ω|1/2 exp
{
− 1

2
θ̂>j Ωθ̂j

}
log∝

m∑
k=1

nk∑
i=1

log

(
1

σ2
k

)
− 1

2σ2
k

(yik − θ>k xik)
2 +

d

2
log |Ω| − 1

2

d∑
j=1

(
θ̂>j Ωθ̂j

)
σ2=1∝ −1

2

m∑
k=1

nk∑
i=1

(yik − θ>k xik)
2 +

d

2
log |Ω| − 1

2
tr
(
ΘΩΘ>

)
∝ −

m∑
k=1

nk∑
i=1

(yik − θ>k xik)
2 + d log |Ω| − tr

(
ΘΩΘ>

)
.

The maximum a posteriori (MAP) inference problem results from minimizing the
negative logarithm of (4.4), which corresponds to regularized multiple linear regression problem

minimize
Θ,Ω

m∑
k=1

nk∑
i=1

(
θ>k xik − yik

)2 − d log |Ω|+ tr(ΘΩΘ>)

subject to Ω � 0 .

(4.6)

Further, assuming that Ω and Θ are sparse, we add `1-norm regularizers over both
parameters to encourage more interpretable models. In the case one task has a much larger
number of samples compared to the others, it may dominate the empirical loss term. To avoid
such bias we modify the cost function and compute the weighted average of the empirical losses.
Another parameter λ0 is added to the trace penalty to control the amount of penalization. The
resulting regularized regression problem is

minimize
Θ,Ω

m∑
k=1

1

nk

nk∑
i=1

(
θ>k xik − yik

)2 − d log |Ω|+ λ0tr(ΘΩΘ>) + λ1‖Θ‖1 + λ2‖Ω‖1

subject to Ω � 0 ,

(4.7)

where λ0, λ1, λ2 > 0 are penalty parameters. The sparsity assumption on Θ is motivated by
the fact that some features may be not relevant for discriminative purposes and can then be
dropped out from the model. Precision matrix Ω plays an important role in Gaussian graphical
models because its zero entries precisely capture the conditional independence, that is, Ωij = 0
if and only if θi ⊥⊥ θj|Θ\{i,j}. Then, enforcing sparsity on Ω will highlight the conditional
independence among tasks parameters, as discussed in Chapter 3.

The role of each term in the minimization problem (4.7) is described in (4.8). The
solution will be a balanced combination of these terms, where the amount of importance con-
ferred to some terms can be controlled by the user by changing the parameters λ0, λ1, and
λ2.

m∑
k=1

1

nk

nk∑
i=1

(
θ>k xik − yik

)2

︸ ︷︷ ︸
loss function

−d log |Ω|︸ ︷︷ ︸
penalizes model

complexity

+ λ0tr(ΘΩΘ>)︸ ︷︷ ︸
allows task

information share

+ λ1‖Θ‖1︸ ︷︷ ︸
induces sparsity

on Θ

+ λ2‖Ω‖1︸ ︷︷ ︸
induces sparsity

on Ω

. (4.8)
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Note that if only the first term (loss function) of Equation (4.8) is considered, it
corresponds to the independent single task learning with dense (non-sparse) task parameters,
therefore, equivalent to perform ordinary least squares (OLS) independently for each task.

In this formulation, the term involving the trace of the outer product tr(ΘΩΘ>)
affects the rows of Θ, such that if Ωij 6= 0, then θi and θj are constrained to be similar.

Problem Optimization and Convergence

We now turn our attention to discuss methods to solve the joint optimization prob-
lem (4.7) efficiently. Although the problem is not jointly convex on Θ and Ω, the problem is in
fact biconvex, that is, fixing Ω the problem is convex on Θ, and vice-versa. So, the associated
biconvex function in problem (4.13) is decomposed into two convex functions:

fΩ(Θ;X, Y, λ0, λ1) =
m∑
k=1

1

nk

nk∑
i=1

(θ>k xik − yik)2 + λ0tr(ΘΩΘ>) + λ1‖Θ‖1 , (4.9a)

fΘ(Ω;X, Y, λ0, λ2) = λ0tr(ΘΩΘ>)− d log |Ω|+ λ2‖Ω‖1. (4.9b)

Common methods for biconvex optimization problems are based on the idea of
alternate minimization, in which the optimization is carried out with some variables are held
fixed in cyclical fashion. In the MSSL optimization problem, we alternate between solving (4.9a)
with Ω fixed and solving (4.9b) with Θ fixed. These two steps are repeated till a stopping
criterion is met. This procedure is known as Alternate Convex Search (ACS) (Wendell and
Hurter Jr, 1976) in the literature of biconvex optimization. There are several ways to define the
stopping criterion for alternate minimization. For example, one can consider the absolute value
of the difference of (Ω(t−1),Θ(t−1)) and (Ω(t),Θ(t)) (or the difference in their function values) or
the relative increase in the variables compared to the last iteration. We used the former.

Under weak assumptions, ACS are guaranteed to converge to stationary points of a
biconvex function. However, no better convergence results (like local or global optimality prop-
erties) can be obtained in general (Gorski et al., 2007). Each stationary point of a differentiable
biconvex function is a partial optimum (see theorem 4.2 in Gorski et al. (2007)), defined as
follows. Let Ω ∈ Sm+ and Θ ∈ Rd×m be two non-empty sets, let B ⊆ Ω×Θ, and let BΩ and BΘ

denote the Ω-sections and Θ-sections, respectively. The partial optimum of a biconvex function
is defined as (Gorski et al., 2007):

Definition 4.2.1 Let f : B → R be a given function and let (Ω∗,Θ∗) ∈ B. Then, (Ω∗,Θ∗) is
called a partial optimum of f on B, if

f(Ω∗,Θ∗) ≤ f(Ω,Θ∗) ∀Ω ∈ BΘ∗ and f(Ω∗,Θ∗) ≤ f(Ω∗,Θ) ∀Θ ∈ BΩ∗ .

Not that partial optimum of a biconvex function is not necessarily a local optimum
of the function (see example 4.2 of Gorski et al. (2007)).

Different from convex optimization problems, the biconvex ones are, in general,
global optimization problems that possibly have a large number of local minima (Gorski et al.,
2007). However, by exploiting the convex substructures of the biconvex optimization problems,
as done by ACS, we can obtain reasonable solutions in an acceptable computational time.

General global optimization methods that search for the global optimum in the
space with possibly many local optima solutions also exist. Floudas and Visweswaran (1990)
proposed a method that the nonconvex problem is decomposed into primal and relaxed dual
subproblems by introducing new transformation variables if necessary and partitioning of the
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resulting variable set. The main drawback of such method is that it requires at each iteration
to solve a large number of general non-linear subproblems which makes it impractical for MTL
problems other than those with a few low dimensional tasks.

Our algorithm based on alternating minimization proceeds as described in Algo-
rithm 1.

Algorithm 1: Multitask Sparse Structure Learning (MSSL) algorithm

Data: {Xk,yk}mk=1. // training data for all tasks

Input: λ0, λ1, λ2 > 0. // penalty parameters chosen by cross-validation

Result: Θ, Ω. // estimated parameters

1 begin
/* Ω0 is initialized with identity matrix and */

/* Θ0 with random numbers in [-0.5,0.5]. */

2 Initialize Ω0 and Θ0

3 t = 1
4 repeat
5 Θ(t+1) = argmin

Θ
fΩ(t)(Θ) // optimize Θ with Ω fixed

6 Ω(t+1) = argmin
Ω
fΘ(t+1)(Ω) // optimize Ω with Θ fixed

7 t = t+ 1

8 until stopping condition met

Parameter initialization: The Ω0 matrix can be initialized as an identity matrix, meaning
that all tasks are considered to be unrelated before seen the data. For the Θ0 matrix, as the
MSSL model assumes that its rows are samples of a multivariate Gaussian distribution with
zero mean, a random matrix with small values close to zero is a good start. In the experiments
we considered values uniformly generated in the range [-0.5,0.5].

Update for Θ: The update step involving (4.9a) is an `1−regularized quadratic problem,
which we solve using established proximal gradient descent methods such as FISTA (Beck
and Teboulle, 2009). The Θ-step can be seen as a general case of the formulation proposed
by Subbian and Banerjee (2013) in the context of climate model combination, where in our
proposal Ω is any positive definite precision matrix, rather than a fixed Laplacian matrix as in
Subbian and Banerjee (2013).

In the class of proximal gradient methods the cost function h(x) is decomposed as
h(x) = f(x)+g(x), where f(x) is a convex and smooth function and g(x) is convex and typically
non-smooth. The accelerated proximal gradient iterates as follows

zt+1 := θtk + ωt
(
θtk − θt−1

k

)
θt+1
k := proxρtg

(
zt+1 − ρt∇f

(
zt+1

)) (4.10)

where ωt ∈ [0, 1) is an extrapolation parameter and ρt is the step size. The ωt parameter is

chosen as ωt = (ηt−1)/ηt+1, with ηt+1 = (1+
√

1 + 4η2
t )/2 as done in Beck and Teboulle (2009)

and ρt can be computed by a line search. The proximal operator associated with the `1-norm
is the soft-thresholding operator

proxρt(x)i = (|xi| − ρt)+sign(xi) (4.11)
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The convergence rate of the algorithm is O(1/t2) (Beck and Teboulle, 2009). Considering the
squared loss, the gradient for the weights of the k-th task is computed as

∇f (θk) =
1

nk
(X>k Xkθk −X>k yk) + λ0ψk (4.12)

where ψk is the k-th column of matrix Φ = 2ΘΩ = ∂
∂Θ

tr(ΘΩΘ>). Note that the first two terms
of the gradient, which come from the loss function, are independent for each task and then can
be computed in parallel.

Θ-step as a Single Larger Problem

The optimization problem (4.9a) can also be written as a single larger problem,
using the vec() notation, and then be solved with standard off-the-shelf optimization methods,
that is, as solving a (larger) single task learning problem. We first write (4.9a) in vec() notation
and construct the following matrices:

vec(Θ) =


θ1

θ2
...
θm

 , vec(C) =


X>1 y1

X>2 y2
...

X>mym

 , X̄ =


X>1 X1 0 0 0

0 X>2 X2 0 0

0 0
. . . 0

0 0 0 X>mXm

 ,

That is, X̄ is a block diagonal matrix where the main diagonal blocks are the task
data matrices X̄k = X>k Xk,∀k = 1, ...,m, and the off-diagonal blocks are zero matrices.

The minimization problem in (4.9a) is equivalent to the following optimization prob-
lem

minimize
vec(Θ)

(
vec(Θ)>X̄vec(Θ)− vec(Θ)>vec(C)

)
+

λ0vec(Θ)>P (Ω⊗ Id)P>vec(Θ) + λ1‖vec(Θ)‖1 ,

(4.13)

where P is a permutation matrix that converts the column stacked arrangement of Θ to a row
stacked arrangement.

∇f (vec(Θ)) = X̄vec(Θ) + λ0P (Ω⊗ Id)P>vec(Θ)− vec(C) (4.14)

The same accelerated proximal gradient method (4.10) can also be applied.

Update for Ω: The update step for Ω involving (4.9b) is known as the sparse inverse covariance
selection problem and efficient methods have been proposed recently (Banerjee et al., 2008;
Friedman et al., 2008; Boyd et al., 2011; Cai et al., 2011; Wang et al., 2013). Re-writing (4.9b)
in terms of the sample covariance matrix S, the minimization problem is

minimize
Ω

λ0tr(SΩ)− log |Ω|+ λ2

d
‖Ω‖1

subject to Ω � 0 ,
(4.15)

where S = 1
d
Θ>Θ. This formulation will be useful to connect to the Gaussian copula extension

in Section 4.2.6. As λ2 is a user defined parameter, the factor 1
d

can be incorporated into λ2.
To solve the minimization problem (4.15) we use an efficient Alternating Direction

Method of Multiplies (ADMM) algorithm (Boyd et al., 2011). ADMM is a strategy that is
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intended to blend the benefits of dual decomposition and augmented Lagrangian methods for
constrained optimization. It takes the form of a decomposition-coordination procedure, in which
the solutions to small local problems are coordinated to find a solution to a large global problem.
We refer interested readers to Boyd et al. (2011) in its Section 6.5 for details on the derivation
of the updates.

In ADMM, we start by forming the augmented Lagrangian function of the problem
(4.15)

Lρ(Ψ, Z, U) = λ0tr(SΨ)− log |Ψ|+ λ2‖Z‖1 +
ρ

2
‖Ψ− Z + U‖2

F −
ρ

2
‖U‖2

F (4.16)

where U is the scaled dual variable. Note that the non-smooth convex function (4.15) is split in
two functions by adding an auxiliary variable Z, besides a linear constraint Ψ− Z = 0. Given
the matrix S(t+1) = 1

d
(Θ(t+1))>Θ(t+1) and setting Ψ0 = Ω(t), Z0 = 0m×m, and U0 = 0m×m, the

ADMM for the problem (4.15) consists of the iterations:

Ψl+1 = argmin
Ψ�0

λ0tr(S(l+1)Ψ)− log |Ψ|+ ρ

2
‖Ψ− Z l + U l‖2

F (4.17a)

Z l+1 = argmin
Z

λ2‖Z‖1 +
ρ

2
‖Ψl+1 − Z + U l‖2

F (4.17b)

U l+1 = U l + Ψl+1 − Z l+1. (4.17c)

The output of the ADMM is Ωt+1 = Ψlmax , where lmax is the number of steps for convergence.
Each ADMM step can be solved efficiently. For the Ψ-update, we can observe, from

the first order optimality condition of (4.17a) and the implicit constraint Ψ � 0, that the
solution consists basically of a singular value decomposion.

The Z-update (4.17b) is an `-penalized quadratic problem that can be computed in
closed form, as follows:

Z l+1 = Sλ2/ρ

(
Ψl+1 + U l

)
, (4.18)

where Sλ2/ρ(·) is the element-wise soft-thresholding operator Boyd et al. (2011). Finally, the
updates for U in (4.17c) are already in closed form.

Choosing the Step-Size

For all gradient based methods used in the optimization of MSSL cost function, the
step-size was defined by backtracking line search based on Armijo’s condition (Armijo, 1966).
It involves starting with a relatively large estimate of the step size for movement along the
search direction, and iteratively shrinking the step size till it satisfies the Armijo’s condition:

f(xk + αpk) ≤ f(xk) + c1α∇f(xk)
>pk (4.19)

where α is the step-size, pk is the moving direction, and 0 < c1 < 1 is a constant. In other
words, the reduction in the function f should be proportional to both the step length α and
the directional derivative ∇f(xk)

>pk. Nocedal and Wright (2006) suggest c1 to be quite small,
for example, c1 = 10−4. Algorithm 2 shows the backtracking line search procedure (Nocedal
and Wright, 2006).

Log Linear Models

As described previously, our model can also be applied to classification. Let us
assume the conditional as a Bernoulli distribution

p
(
yik
∣∣xik,θk) = Be

(
yik
∣∣h (θ>k xik

))
, (4.20)
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Algorithm 2: Backtracking Line Search

1 begin
2 Choose ᾱ > 0, ρ ∈ (0, 1), c1 ∈ (0, 1);
3 Set α← ᾱ // ᾱ = 1 can be a good start

// While Armijo’s condition is satisfied

4 while f(xk + αpk) ≤ f(xk) + c1α∇f(xk)
>pk do

5 α← ρα // decrease step-size

6 Return α

where h(·) is the sigmoid function, and Be(·) is a Bernoulli distribution. Considering the
Gaussian prior distribution over the features across all tasks in (4.4), the posterior distribution
is obtained as:

p(Θ|X,Y,Ω) =
m∏
k=1

nk∏
i=1

p(y
(i)
k |x

(i)
k ,θ

>
k )

d∏
j=1

p(θ̂j |0,Ω)

=
m∏
k=1

nk∏
i=1

Be(yik;h(θ>k x
i
k))

d∏
j=1

N (θ̂j |0,Ω)

∝
m∏
k=1

nk∏
i=1

h(θ>k x
i
k)
yik(1− h(θ>k x

i
k))

1−yik
d∏
j=1

|Ω|1/2 exp
{
− 1

2
θ̂>j Ωθ̂j

}
log
∝

(
m∑
k=1

nk∑
i=1

yik log
(
h(θ>k x

i
k)
)

+ (1− yik) log
(

1− h(θ>k x
i
k)
))

+
d

2
log |Ω| − 1

2
tr
(

ΘΩΘ>
)

(4.21)

Therefore, following the same construction as in Section 4.2.3, parameters Θ and Ω
can be obtained by solving the following minimization problem:

minimize
Θ,Ω

m∑
k=1

1

nk

nk∑
i=1

(
yikθ

>
k x

i
k − log(1 + eθ

>
k xi

k)
)

+
λ0

2
tr(ΘΩΘ>)− d

2
log |Ω|+ λ1‖Θ‖1 + λ2‖Ω‖1

subject to Ω � 0 .
(4.22)

The loss function is the logistic loss, where we have considered a 2-class classification setting.

Note that the objective function in (4.22) is similar to the one obtained for multitask
learning with linear regression in (4.7) in Section 4.2.3. Therefore, we use the same alternating
minimization algorithm described in Section 4.2.3 to solve the problem (4.22).

In general, we can consider any generalized linear model (GLM) (Nelder and Baker,
1972), with different link functions h(·), and therefore different probability densities, such as
Poisson, Multinomial, and Gamma, for the conditional distribution. For any such model, our
framework requires the optimization of an objective function of the form

minimize
Θ,Ω

m∑
k=1

LossFunc(Xk,yk,θk) + λ0tr(ΘΩΘ>)− d log |Ω|+ λ1‖Θ‖1 + λ2‖Ω‖1.

subject to Ω � 0 .

(4.23)

where LossFunc(·) is a convex loss function obtained from a GLM.
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4.2.4 p-MSSL Interpretation as Using a Product of Distributions as
Prior

From a probabilistic perspective, sparsity can be enforced using the so-called sparsity
promoting priors, such as the Laplacian-like (double exponential) prior (Park and Casella, 2008).
Accordingly, instead of exclusively assuming a multivariate Gaussian distribution as a prior for
the rows of tasks parameter matrix Θ, we can consider an improper prior which consists of the
product of multivariate Gaussian and Laplacian distributions, of the form

PGL
(
θ̂j|µ,Ω, λ0, λ1

)
∝ |Ω|1/2 exp

{
−λ0

2
(θ̂j − µ)>Ω(θ̂j − µ)

}
exp

{
−λ1

2
‖θ̂j‖1

}
, (4.24)

where we introduced the λ0 parameter to control the strength of the Gaussian prior. By
changing λ0 and λ1, we alter the relative effect of the two component priors in the product.
Setting λ0 to one and λ1 to zero, we return to the exclusive Gaussian prior as in (4.4). Hence, p-
MSSL formulation in (4.13) can be seen exactly (assuming sparse precision matrix in Gaussian
prior) as a MAP inference of the conditional posterior distribution (with µ = 0)

p
(

Θ|X,Y,Ω
)
∝

m∏
k=1

nk∏
i=1

N
(
yik|θ>k xik, σ2

k

) d∏
j=1

PGL
(
θ̂j |Ω, λ0, λ1

)
,

∝
m∏
k=1

Nk∏
i=1

1

2σ2
k

exp
{
− 1

2σ2
k

(yik − θ>k xik)2
} d∏
j=1

|Ω|1/2 exp
{
− λ0

2
θ̂>j Ωθ̂j −

λ1

2
‖θ̂j‖1

}
,

log
∝

m∑
k=1

nk∑
i=1

log

(
1

σ2
k

)
− 1

2σ2
k

(yik − θ>k xik)2 +
d

2
log |Ω| − λ0

2

d∑
j=1

(
θ̂>j Ωθ̂j

)
− λ1

2
‖Θ‖1 ,

σ2
k=1
∝ −1

2

m∑
k=1

nk∑
i=1

(yik − θ>k xik)2 +
d

2
log |Ω| − λ0

2
tr
(

ΘΩΘ>
)
− λ1

2
‖Θ‖1 ,

∝ −
m∑
k=1

nk∑
i=1

(yik − θ>k xik)2 + d log |Ω| − λ0tr
(

ΘΩΘ>
)
− λ1‖Θ‖1.

This is exactly the MSSL formulation, except for the `1-penalization on the precision matrix.
The associated optimization problem is

minimize
Θ,Ω

m∑
k=1

nk∑
i=1

(yik − θ>k xik)
2 − d log |Ω|+ λ0tr

(
ΘΩΘ>

)
+ λ1‖Θ‖1.

subject to Ω � 0.

Equivalently, the p-MSSL with GLM formulation as (4.23) can be obtained by re-
placing the conditional Gaussian (4.24) by another distribution in the exponential family.

4.2.5 Adding New Tasks

Suppose now that, after estimating all the task parameters and the precision matrix,
a new task arrives and needs to be trained. This is known as the asymmetric MTL problem
(Xue et al., 2007b). Clearly, it will be computationally prohibitive in real applications to re-run
the MSSL every time a new task arrives. Fortunately, MSSL can easily incorporate the new
learning task into the framework using the information from the previous trained tasks.
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After the arrival of the new task m̃, where m̃ = m+1, the extended sample covariance
matrix S̃, computed from the parameter matrix Θ, and the precision matrix Ω̃ are partitioned
in the following form

Ω̃ =

(
Ω11 ω12

ω>12 ω22

)
S̃ =

(
S11 s12

s>12 s22

)
where S11 and Ω11 are the sample covariance and precision matrix, respectively, corresponding to
the previous tasks, which have already been trained and will be kept fixed during the estimation
of the parameters associated with the new task.

Let θm̃ be the set of parameters associated with the new task m̃ and Θ̃ = [Θm θm̃]d×m̃,
where Θm is the matrix with the task parameters of all previous m tasks. For the learning of
θm̃, we modify problem (4.9a) to include only those terms on which θm̃ depends:

fΩ̃(θm̃;Xm̃,ym̃, λ0, λ1) =
1

nm̃

nm̃∑
i=1

(θ>m̃x
i
m̃ − yim̃)2 + λ0tr(Θ̃Ω̃Θ̃>) + λ1‖θm̃‖1 (4.25)

and the same optimization methods for (4.9a) can be applied.
Recall that the task dependence learning problem (4.15) is equivalent to solving a

graphical Lasso problem. Based on Banerjee et al. (2008), Friedman et al. (2008) proposed a
block coordinate descent method which updates one column (and the corresponding row) of the
matrix Ω̃ per iteration. They show that if Ω̃ is initialized with a positive semidefinite matrix,
then the final (estimated) Ω̃ matrix will be positive semidefinite, even if d > m. Setting initial
values of ω12 as zero and ω22 as one (the new task is supposed to be conditionally independent on
all other previous tasks), the extended precision matrix Ω̃ is assured to be positive semidefinite.
From Friedman et al. (2008), ω12 and ω22 are obtained as:

ω12 = −β̂θ22 (4.26a)

ω22 = 1/(θ22 − θ>12β̂) (4.26b)

where β̂ is computed from

β̂ := arg min
α

{1

2
‖Ω̃1/2

m α− Ω̃−1/2
m s12‖2

2 + δ‖α‖1

}
(4.27)

where η > 0 and δ > 0 are sparsity regularization parameters; and θ>12 = Ω̃−1
11 β̂ and θ22 = s22+δ.

See Friedman et al. (2008) for further details. The problem (4.27) is a simple Lasso formulation
for which efficient algorithms have been proposed (Beck and Teboulle, 2009; Boyd et al., 2011).
Then, to learn the coefficients for the new task m̃ and its relationship with the previous tasks,
we iterate over solving (4.25) and (4.26) until convergence.

4.2.6 MSSL with Gaussian Copula Models

In the Gaussian graphical model associated with the problem (4.9b), the features
across multiple tasks are assumed to be normally distributed. The Gaussian assumption, be-
sides constraining the marginals to also be univariate Gaussian distributions, the dependence
structure among the marginals is, by definition, linear. Therefore, a more flexible model is
required to deal with non-Gaussian data and be able to capture non-linear dependence. We
propose to employ a semiparametric Copula Gaussian model discussed in Chapter 3, which
provides a much wider flexibility with a small increase in the computational cost.



69

Copula is an appealing tool as it allows separating the modeling of the marginal
distributions Fk(x), k = 1, ...,m, from the dependence structure, which is expressed in the
copula function C. With the isolation of both components, the marginals can be firstly modeled
and then linked through the copula function to form the multivariate distribution. Looking at
each variable individually, we may find that variables follow different distribution and not all
are strictly Gaussian. For example, in a three-variate distribution, we may choose a Gamma,
Exponential and Student’s t distribution for each marginal.

We discussed in Chapter 3 a more general formulation that allows the marginals to
follow any non-parametric distribution, the so called semiparametric Gaussian copulas (Tsuka-
hara, 2005; Liu et al., 2009; Xue and Zou, 2012; Liu et al., 2012).

We then assume that features across multiple tasks have a common prior semipara-
metric Gaussian copula distribution of the form

θ̂j ∼ SGC(f1, ..., fm; Ω0) j = 1, ..., d (4.28)

where SGC(f1, ..., fm; Ω0) is an m-variate distribution defined as

SGC(f1, ..., fm; Ω0) = ΦΩ0

(
f(θ1), ..., f(θm)

)
, (4.29)

where f1, ..., fm is a set of monotonic and differentiable transformation functions, ΦΩ0 is the
joint distribution function of a multivariate normal distribution with mean vector zero and
inverse covariance matrix equal to the inverse correlation matrix Ω0. Figure 4.1 shows a visual
interpretation of the model.

Θ =


θ11 θ12 . . . θ1m

θ21 θ22 . . . θ2m
...

...
. . .

...
θd1 θd2 . . . θdm

 SGC(f1, ..., fm; Ω0)

Figure 4.1: Features across all tasks are samples from a semiparametric Gaussian copula distri-
bution with unknown set of marginal transformation functions fj and inverse correlation matrix
Ω0.

We observe that the SGC distribution is general enough to model a wide class of
features across tasks marginal distributions f(θk), k = 1, ..., d.

The overall multitask sparse structure learning method is to maximize the posterior
distribution

p (Θ|X, Y,Ω) ∝
m∏
k=1

nk∏
i=1

p
(
yik
∣∣xik,θk) d∏

j=1

SGC
(
θ̂j|Ω0

)
, (4.30)

in which the same derivation process in Section 4.2.3 for obtaining the optimization problems
can be performed.

In Chapter 3 we showed that when we are only interested in estimating the inverse
correlation Ω0 rather than the full joint probability distribution, there is no need for charac-
terizing the marginal non-parametric functions f1, ..., fd. If sparsity in Ω0 is desired, we can
readily estimate the parameter via an `1-penalized maximum likelihood formulation similar to
a multivariate Gaussian distribution, which is given by:

Ω̂0 = arg min
Ω0

{
tr(SΩ0)− log |Ω0|+ λ‖Ω0‖1

}
(4.31)
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where S =
1

d− 1

d∑
k=1

(θk − θ̄)>(θk − θ̄).

The only difference between estimating inverse correlation matrix Ω0, compared to
precision matrix in Gaussian graphical model, is the replacement of sample covariance matrix
S in the graphical Lasso formulation (4.15) with the Spearman’s ρ and Kendall’s τ rank-based
correlation:

Spearman’s ρ : Ŝρij =

{
2 sin

(
π
6
ρ̂ij
)
, i 6= j

1 , i = j
(4.32)

Kendall’s τ : Ŝτij =

{
sin
(
π
2
τ̂ij
)
, i 6= j

1 , i = j
. (4.33)

The optimization then becomes:

Ω̂0 = arg min
Ω0

{
tr(ŜτΩ0)− log |Ω0|+ λ‖Ω0‖1

}
, (4.34)

the estimated inverse correlation matrix Ω̂0 is, therefore, used into the joint task learning for-
mulation (4.9a). As rank-based correlation measures, such as Kendall’s and Spearman’s, can
capture certain non-linear dependence, the use of semiparametric Gaussian copula distribu-
tion enables capturing more complex tasks relationships than traditional linear dependence in
Gaussian graphical models.

The same alternating direction method of multipliers proposed in Section 4.2.3 can
be used for solving (4.34). The MSSL algorithms with Gaussian copula models are called
p-MSSLcop and r-MSSLcop, for the parameter and residual-based versions, respectively.

By using sorting and balanced binary trees, Christensen (2005) showed that rank-
based correlation coefficient can be calculated with complexity of O(mlogm).

The MSSL algorithm with semiparametric copula modeling is presented in Algorithm
3. Compared with the canonical MSSL Algorithm in 1, the only difference is the computation
of rank-based correlation of the tasks parameters θk, using either Spearman’s ρ or Kendall’s
τ correlation. With this relatively small increase in computation cost, we have a much more
flexible task dependence modeling.

Algorithm 3: MSSL with copula dependence modeling

Data: {Xk,yk}mk=1. // training data for all tasks.

Input: λ0, λ1, λ2 > 0. // chosen by cross-validation.

Result: Θ, Ω.
1 begin

/* Ω0 is initialized with identity matrix and */

/* Θ0 with random numbers in [-0.5,0.5]. */

2 Initialize Ω0 and Θ0 and make t = 1
3 repeat
4 Θ(t) = argmin

Θ
fΩ(t−1)(Θ) // optimize for Θ with Ω fixed.

5 S(t) = Ŝτ (Θ) or Ŝρ(Θ) // compute rank-based correlation of the task parameters

6 Ω(t) = argmin
Ω
fS(t)(Ω) // optimize for Ω with Θ fixed.

7 t = t+ 1

8 until stopping condition met
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Equivalent performance has been shown in graph estimations based on Spearman’s
ρ and Kendal’s τ statistics (Liu et al., 2012). Then, either Ŝτ (Θ) or Ŝρ(Θ) can be used.

4.2.7 Residual Precision Structure

In the residual structure based MSSL, called r-MSSL, the relationship among tasks
will be modeled in terms of partial correlations among the errors ξ = (ξ1, . . . , ξm)>, instead of
considering explicit dependencies between the coefficients θ1, . . . ,θm for the different tasks. To
illustrate this idea, let us consider the regression scenario where Y = (y1, . . . ,ym) is a vector
of desired outputs for each task, and X = (X1, . . . ,Xm)> are the covariates for the m tasks.
The assumed linear model can be denoted by

Y = XΘ + ξ , (4.35)

where ξ = Y − XΘ ∼ N (0,Σ0). In this model, the errors are not assumed to be i.i.d.,
but vary jointly over the tasks following a Gaussian distribution with precision matrix Ω =
(Σ0)−1. Finding the dependence structure among the tasks now amounts to estimating the
precision matrix Ω. Such models are commonly used in spatial statistics (Mardia and Marshall,
1984) in order to capture spatial autocorrelation between geographical locations. We adopt the
framework in order to capture “loose coupling” between the tasks by means of a dependence in
the error distribution. For example, in domains such as climate or remote sensing, there often
exist noise autocorrelations over the spatial domain under consideration. Incorporating this
dependence by means of the residual precision matrix is therefore more interpretable than the
explicit dependence among the coefficients in Θ.

Following the above definition, the multi-task learning framework can be modified
to incorporate the relationship between the errors ξ. We assume that the coefficient matrix Θ
is fixed, but unknown. Since ξ follows a Gaussian distribution, maximizing the likelihood of
the data, penalized with a sparse regularizer over Ω, reduces to the optimization problem

minimize
Θ,Ω

(
m∑
k=1

1

nk
‖yk −Xkθk‖2

2

)
− d log |Ω|+

λ0tr
(

(Y −XΘ)Ω(Y −XΘ)>
)

+

λ1‖Θ‖1 + λ2‖Ω‖1.

subject to Ω � 0.

(4.36)

We use the alternating minimization scheme illustrated in previous sections to solve
the problem in (4.36). Note that the objective is also convex in each of its arguments Θ and
Ω, and thus a local minimum will be reached (Gunawardana and Byrne, 2005). Fixing Θ, the
problem of estimating Ω is exactly the same as (4.15), but with the interpretation of capturing
the conditional dependence among the residuals instead of the coefficients. The problem of
estimating the tasks coefficients Θ will be slightly modified due to the change in the trace
term, but the algorithms presented in Section 4.2.3 can still be used. Further, the model can
be extended to losses other than the squared loss, used here due to the fact that ξ follows a
Gaussian distribution.

Two instances of MSSL have been provided, p-MSSL and r -MSSL, along with their
Gaussian copula versions, p-MSSLcop and r -MSSLcop. In summary, p-MSSL and p-MSSLcop

can be applied to both regression and classification problems. On the other hand, r -MSSL and
r -MSSLcop, can only be applied to regression problems, as the residual error of a classification
problem is clearly non-Gaussian.
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4.2.8 Complexity Analysis

The complexity of an iteration of the MSSL algorithms can be measured in terms
of the complexity of its Θ-step and Ω-step. Each iteration of the FISTA algorithm in the Θ-
step involves the element-wise operations, for both the z-update and the proximal operator,
which takes O(md) operations each. Recalling that m is the number of tasks and d is the
task dimensionality. Gradient computation of the squared loss with trace penalization involves
matrices multiplication which costs O(max(mn2d, dm2)) operations for dense matrix Θ and Ω,
but can be reduced as both matrices are sparse. We are assuming that all tasks have the same
number of samples n.

In an ADMM iteration, the dominating operation is clearly the SVD decomposition
when solving the subproblem (4.17a). It costs O(m3) operations for squared matrices. For large
matrices, fast approximations of the SVD can be used. These methods search for the best rank-
k approximation to the original matrix, that is, instead of find all the eigenvectors/eigenvalues,
it finds only the subset of top k eigenvectors/eigenvalues. It is sometimes called truncated or
partial SVD decomposition. In this class of algorithms, many iterative methods based on Krylov
subspaces for large dense and sparse matrices have been proposed (Baglama and Reichel, 2005;
Stoll, 2012). Another sub-class of methods for large matrices is the randomized methods (Halko
et al., 2011) that require O(m2log(k)) operations. Compared to classical deterministic methods,
the randomized ones are claimed to be faster and surprisingly more robust (Halko et al., 2011).
Parallel methods for the problem also exist, see (Berry et al., 2006) for a detailed discussion.

The other two steps amount to element-wise operations which costs O(m2) opera-
tions. As mentioned previously, the copula-based MSSL algorithms have the additional cost of
O(m log(m)) for computing Kendal’s τ or Spearman’s ρ statistics.

The memory requirements include O(md) for the z and previous weight matrix
Θ(t−1) in the Θ-step and O(m2) for the dual variable U and the auxiliary matrix Z in the
ADMM for the Ω-step. We should mention that the complexity is evidently associated with
the optimization algorithms used for solving problems (4.9a) and (4.9b).

4.3 MSSL and Related Models

In the same spirit as our method, sparsity on both Θ and Ω is enforced in Rothman
et al. (2010). Our residual-based MSSL, which is the closest to the formulation in Rothman
et al. (2010), differs in two aspects: (i) our formulation allows a richer class of conditional
distribution p(y|x), namely distributions in the exponential family, rather than simply Gaussian;
and (ii) we employ a semiparametric Gaussian copula model to capture task relationship,
which does not rely on the Gaussian assumption on the marginals and have shown to be
more robust to outliers Liu et al. (2012), when compared to the traditional Gaussian model
used in Rothman et al. (2010). As will be seen in the experiments, the MSSL method with
copula models produced more accurate predictions. Rai et al. (2012) extended the formulation
in Rothman et al. (2010) to model feature dependence, additionally to the task dependence
modeling. However, it is computationally prohibitive for high-dimensional problems, due to
the cost of estimating another precision matrix for feature dependence.

Although the models just discussed are capable of modeling and incorporating the
task relationship information into account when learning all tasks jointly, they usually increase
the computational resources required to learn the model parameters, which consequently affects
the scalability of the method. As will be seen in the next sections, we propose a simple model
where the task relationship information is represented by a Gaussian graphical model. The
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corresponding parameter estimation problem is biconvex, and can be solved by alternately
optimizing over two convex problems, for which efficient methods have been recently proposed
(Beck and Teboulle, 2009; Boyd et al., 2011; Cai et al., 2011).

We also show that our formulation readily allows the use of a more flexible class
of undirected probabilistic graphical models, called Gaussian copula models (Liu et al., 2009,
2012). Unlike traditional Gaussian graphical models, Gaussian copula models can also capture
certain types of non-linear dependence among tasks. In Zhang and Yeung (2010); Zhang and
Schneider (2010) and Yang et al. (2013) the dependencies are modeled by means of the tasks
parameters. Here, we also suggest to look at the relationship through the residual error of
regression tasks. The experiments show that the residual-based approach usually outperforms
the coefficient-based version for the problem of combining ESMs outputs for future temperature
projections.

4.4 Experimental results

In this section we provide experimental results to show the effectiveness of the pro-
posed framework for both regression and classification problems.

4.4.1 Regression

We start with experiments on synthetic data and then move to the problem of pre-
dicting land air temperature in South and North America by the use of multi-model ensemble.

Selecting the penalization parameters λ’s

To select the penalty parameters λ1 and λ2 we use a cross-validation approach. The
training data is split into two subsets sb 1 and sb 2, with randomly selected 2/3 and 1/3 of the
data, respectively. For a given λ ∈ Λ, where Λ is the set of possible values for λ, commonly
specified by the user, MSSL is trained in the sb 1 and its performance evaluated on sb 2. The
λ value with the best performance on sb 2 is selected and, then, MSSL is trained on the entire
training data, sb 1 ∪ sb 2.

Synthetic Dataset

We created a synthetic dataset with 10 linear regression tasks of dimension D =
Dr+Du, where Dr and Du are the number of relevant and non-relevant (unnecessary) variables,
respectively. This is to evaluate the ability of the algorithm to discard non-relevant features.
We defined Dr = 30 and Du = 5. For each task, the relevant input variables X ′k are generated
i.i.d. from a multivariate normal distribution, X ′k ∼ N (0, IDr). The corresponding output
variable is generated as yk = X ′kθk +ε where εi ∼ N (0, 1),∀i = 1, ..., nk. Unnecessary variables
are generated as X ′′k ∼ N (0, IDu). Hence, the total synthetic input data of the k-th task
is formed as the concatenation of both set of variables, Xk = [X ′k X

′′
k ]. Note that only the

relevant variables are used to produce the output variable yk. The parameter vectors for all
tasks are chosen so that tasks 1 to 4 and 5 to 10 form two groups. Parameters for tasks 1-4 were
generated as: θk = θa � bk + ε, where � is the element-wise Hadamard product; and for tasks
5-10: θk = θb�bk+ε, where ε = N (0, 0.2IDr). Vectors θa and θb are generated from N (0, IDr),
while bk ∼ U(0, 1) are uniformly distributed Dr-dimensional random vectors. In summary, we
have two clusters of mutually related tasks. We randomly generated 150 independent samples
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for each task, from what 50 data instances were used for training and the remaining 100 samples
for test. In this experiment we set λ0 = 1.

Figure 4.2 is a box-plot of the RMSE error for p-MSSL and for the case where
Ordinary Least Squares (OLS) was applied individually for each task. As expected, sharing
information among related tasks improves prediction accuracy. p-MSSL does well on related
tasks 1 to 4 and 5 to 10. Figures 4.4a and 4.4b depict the sparsity pattern of the task parameters
Θ and the precision matrix Ω estimated by the p-MSSL algorithm. As can be seen, our model is
able to recover the true dependence structure among tasks. The two clusters of tasks were clearly
revealed, indicated by the filled squares, meaning non-zero entries in the precision matrix, and
then, relationship among tasks. Additionally, p-MSSL was able to discard most of the irrelevant
features (last five) intentionally added into the synthetic dataset.

Tasks
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Figure 4.2: RMSE per task comparison between
p-MSSL and Ordinary Least Square over 30 in-
dependent runs. p-MSSL gives better perfor-
mance on related tasks (1-4 and 5-10).
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Figure 4.4: Sparsity pattern of the p-MSSL estimated parameters on the synthetic dataset:
(a) precision matrix Ω; (b) weight matrix Θ. The algorithm precisely identified the true task
relationship in (a) and removed most of the non-relevant features (last five columns) in (b).

Sensitivity analysis of p-MSSL sparsity parameters λ1 (controls sparsity on Θ) and
λ2 (controls sparsity on Ω) on the synthetic data is presented in Figure 4.3. We observe that the
smallest RMSE was found with a value of λ1 > 0, which implies that a reduced set of variables
is more representative than the full set, as it is indeed the case for the synthetic dataset. The
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best solution is with a sparse precision matrix, as we can see in Figure 4.3 (smallest RMSE
with λ2 > 0). We should mention that as we increase λ1 we encourage sparsity on Θ and,
as a consequence, it becomes harder for p-MSSL to capture the true relationship among the
column vectors (tasks parameters), since it learns Ω from Θ. This drawback is overcome in
the r-MSSL algorithm, in which the precision matrix is estimated from the residuals instead of
being estimated from the task parameters directly.

Earth System Model Uncertainties and Multimodel Ensemble

The forecasts of future climate variables produced by ESMs have high variability due
to three sources of uncertainty: future anthropogenic emissions of greenhouse gases, aerosols,
and other natural forcings (“emission uncertainties”); imprecision due to incomplete understand-
ing of climate systems (“model uncertainties”); and the existence of inherent internal climate
variability itself (“initial condition uncertainties”). In this work, we focus on reducing model
uncertainties and producing more reliable projections. Climate science institutes from various
countries (see Table 4.1 for a few examples) have proposed several ESMs, differing slightly from
each other in the way they model climate processes that are not fully understood. Consequently,
different ESM can produce different projections, but still plausibly represents the real world.

For performing a simulation, one needs to define the initial conditions of the experi-
ment, that is, the starting states, such as the current values of temperature, wind and humidity
in a certain place. As the climate is a chaotic system, small changes in these states can lead
to a totally different path for the system. In other words, varying the initial condition for a
ESM simulation can produce significantly different projections. Each simulation with a different
starting state is known as a run in the climate literature. In this study we considered a single
run for each ESM. Future work will be focused on the combination of ESMs with multiple runs
each.

To give a sense of the variability among ESMs, Figure 4.5 shows South American
monthly mean temperature anomalies for the period of 1901 to 2000 that 10 different ESMs pro-
duced. In the climate community, anomalies refer to the deviation of the climate variable time
serie from an average or baseline value1. For temperature, the baseline is typically computed
by averaging 30 or more years of temperature data, for example, from 1961 to 1990. Looking
at the anomalies also reduces the seasonal and elevation influences, as these are relative values.
For example, areas with higher elevations tend to be cooler than others with lower elevations,
so that the absolute values can have large variation among different areas.

A well-accepted approach of addressing model uncertainty is the concept of multi-
model ensemble (Weigel et al., 2010) in which instead of relying on a single ESM, projection
is performed based on a set of produced simulations. There is still no consensus on the best
method of combining ESMs outputs (Weigel et al., 2010). The simplest approach is to assign
equal weights to all ESMs, then perform an arithmetic mean. Other approaches suggest assign-
ing different weights to individual ESMs (Krishnamurti et al., 1999; Tebaldi and Knutti, 2007),
with the weights specifically chosen to reflect the competence of ESMs in providing reliable
projections. The problem of ESMs ensemble then consists of solving a least square problem
for each geographical location. For each location in figure 4.6 (the dots spread out in a grid
pattern throughout the land surface) a least square problem need to be solved.

Our multitask learning approach also attempts to find a set of weights for each
geographical location. Weights are also estimated via a least square fitting. However, the
primary novelty of our methodology is that it jointly solves all least square problems in a

1More details: https://www.ncdc.noaa.gov/monitoring-references/dyk/anomalies-vs-temperature

https://www.ncdc.noaa.gov/monitoring-references/dyk/anomalies-vs-temperature
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Figure 4.5: South American land monthly mean temperature anomalies in ◦C for 10 Earth
system models.

multitask learning fashion, allowing the exchange of information among related geographical
locations.

We consider the problem of combining ESM outputs for land surface temperature
prediction in both South and North America, which are the world’s fourth and third-largest
continents, respectively, and jointly cover approximately one third of the Earth’s land area.
The climate is very diversified in those areas. In South America, the Amazon River basin in
the north has the typical hot wet climate suitable for the growth of rain forests. The Andes
Mountains, on the other hand, remain cold throughout the year. The desert regions of Chile are
the driest part of South America. As for North America, the subartic climate in North Canada
contrasts with the semi-arid climate in western United States and Mexico’s central area. The
Rocky Mountains have a large impact in land’s climate, and temperature significantly varies
due to topographic effects (elevation and slope) (Kinel et al., 2002). Southeast of the United
States is characterized by its subtropical humid climate with relatively high temperatures and
an evenly distributed precipitation throughout the year.

For the experiments we use 10 ESMs from the CMIP5 dataset (Taylor et al., 2012).
Details about the ESMs datasets are listed in Table 4.1. The global observation data for
surface temperature is obtained from the Climate Research Unit (CRU)2. Both, ESM outputs
and observed data are the raw temperatures (not anomalies) measured in degree Celsius. We
align the data from the ESMs and CRU observations to have the same spatial and temporal
resolution, using publicly available climate data operators (CDO)3. For all the experiments,
we used a 2.5o × 2.5o grid over latitudes and longitudes in South and North America, and
monthly mean temperature data for 100 years, 1901-2000, with records starting from January
16, 1901. In other words, we have two datasets: (1) South America with 250 spatial locations;
and (2) North America with 490 spatial locations over land4. For the MTL framework, each

2http://www.cru.uea.ac.uk
3https://code.zmaw.de/projects/cdo
4Datasets and code are available at: bitbucket.org/andreric/mssl-code
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Figure 4.6: South America: for each geographical location shown in the map, a linear regression
is performed to produce a proper combination of ESMs outputs.

geographical location represents a task (regression problem).

From an MTL perspective, the two datasets have different levels of difficulty. North
America dataset has almost twice the number of tasks as compared to South America, so that
we discuss the performance of MSSL in problems with high number of tasks. It brings new
challenges to MTL methods. On the other hand, South America has a more diverse climate,
which makes task dependence structure more complex. Preliminary results on South America
were published in Gonçalves et al. (2015) employing a high-level description format.

Baselines and Evaluation: We consider the following eight baselines for comparison and
evaluation of MSSL performance for the ESM combination problem. The first two baselines
(MMA and Best-ESM) are commonly used in climate sciences due to their stability and simple
interpretation. We will refer to these baselines and MSSL as the “models” in the sequel and
the constituent ESMs as “submodels”. Four well known MTL methods were also added in the
comparison. The eight baselines are:

1. Multi-model Average (MMA): is the current technique used by Intergovernmental
Panel on Climate Change (IPCC)5, which gives equal weight to all ESMs at every location.

2. Best-ESM: uses the predicted outputs of the best ESM in the training phase (lowest
RMSE). This baseline is not a combination of submodels, but a single ESM instead.

5http://www.ipcc.ch
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ESM Origin Refs.

BCC CSM1.1 Beijing Climate Center, China (Zhang et al., 2012)
CCSM4 National Center for Atmospheric Research, USA (Washington et al., 2008)
CESM1 National Science Foundation, NCAR, USA (Subin et al., 2012)
CSIRO Commonwealth Scient. and Ind. Res. Org., Australia (Gordon et al., 2002)

HadGEM2 Met Office Hadley Centre, UK (Collins et al., 2011)
IPSL Institut Pierre-Simon Laplace, France (Dufresne et al., 2012)

MIROC5 Atmosphere and Ocean Research Institute, Japan (Watanabe et al., 2010)
MPI-ESM Max Planck Inst. for Meteorology, Germany (Brovkin et al., 2013)

MRI-CGCM3 Meteorological Research Institute, Japan (Yukimoto et al., 2012)
NorESM Norwegian Climate Centre, Norway (Bentsen et al., 2012)

Table 4.1: Description of the Earth System Models used in the experiments. A single run for
each model was considered.

3. Ordinary Least Squares (OLS): performs an ordinary least squares regression for each
geographic location, independently of the others.

4. Spatial Smoothing Multi Model Regression (S2M2R): recently proposed by Sub-
bian and Banerjee (2013) to deal with ESM outputs combination, can be seen as a special
case of MSSL with the pre-defined dependence matrix Ω equal to the Laplacian matrix.

5. MTL-FEAT (Argyriou et al., 2007): all the tasks are assumed to be related and share
a low-dimensional feature subspace. The following two methods, 6 and 7, can be seen as
relaxations of this assumption. We used the code provided in MALSAR package (Zhou
et al., 2011b).

6. Group-MTL (Kang et al., 2011): groups of related tasks are assumed and tasks belong-
ing to the same group share a common feature representation. The code was taken from
the author’s homepage6.

7. GO-MTL (Kumar and Daume III, 2012): founded on a relaxation of the group idea in
Kang et al. (2011) by allowing subspaces shared by each group to overlap between them.
We obtained the code directly from the authors7.

8. MTRL (Zhang and Yeung, 2010): the covariance matrix among tasks coefficients is
captured by imposing a matrix-variate normal prior over the coefficient matrix Θ. The
non-convex MAP problem is relaxed and an alternating minimization procedure is pro-
posed to solve the convex problem. The code was taken from author’s homepage8.

Methodology
For the experiments, we assume stationarity of the sub-models weights, that is, the

coefficient associated with each sub-model does not change over time. To have an overall mea-
sure of the capability of the method, we considered distinct scenarios with different amount of
data available for training. For each scenario, the same number of training data (columns of
Table ??) are used for all tasks, and the remaining data is used for test. Starting from one
year of temperature measures (12 samples), we increase till ten years of data for training. The
remained data was used as test set. For each scenario 30 independent executions of the methods

6http://www-scf.usc.edu/∼zkang/GoupMTLCode.zip
7We thank the authors for providing the code.
8http://www.comp.hkbu.edu.hk/∼yuzhang/codes/MTRL.zip
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are performed. In each execution, a different initialization of the parameters of the methods is
performed. Therefore, the results are reported as the average and standard deviation of RMSE
for all scenarios.

Results
Tables 4.2 and 4.3 report the average and standard deviation RMSE for all loca-

tions in South and North America, respectively. In South America, except for the smallest
training sample (12 months) the average model (MMA) has the highest RMSE for all training
sample size. Best-ESM presented a better temperature future projection compared to MMA.
Generally speaking, the MTL methods performed significantly better than non-MTL ones, par-
ticularly when a small number of samples are available for training. As the spatial smoothness
assumption is true for temperature, S2M2R obtained results comparable with those yielded by
MTL methods. However, this assumption does not hold for other climate variables, such as
precipitation and S2M2R may not succeed in those problems. On the other hand, MTL meth-
ods are general enough and in principle can be used for any climate variable. In the realm of
MTL methods, all the four MSSL instantiations outperform the four other MTL contenders.
It is worth observing that the two MSSL methods based on Gaussian Copula models provided
smaller RMSE than the two with Gaussian models, particularly for problems with small train-
ing sample size. As Gaussian Copula models are more flexible, it is able to capture a wider
range of task dependencies than ordinary Gaussian models.

Figure 4.7 presents graphically the results contained in Tables 4.2 and 4.3, focusing
on the comparison of r-MSSLcop with the four methods used in the climate science literature:
Best-ESM, MMA, OLS, and S2M2R. As we increase the period of time we used to estimate the
weights, the performance of the weight-based algorithms is getting better and better. MMA
has the same performance throughout the experiment, as it does not take past information into
account, it only computes the average of the ESMs predictions. Even with short period of past
temperature measurements, r-MSSLcop produces good projections, meaning that it has a lower
sample complexity (number of samples required for training) than the other methods.
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Figure 4.7: South (left) and North America (right) mean RMSE. It shows that r-MSSLcop

has a smaller sample complexity than the four well-known methods for ESMs combination,
which means that r-MSSLcop produces good results even when the observation period (training
samples) is short.

Focusing now on the performance comparison of r-MSSLcop with the other multitask
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South America

Algorithms
Months

12 24 36 48 60 72 84 96 108 120

Best-ESM
1.61 1.56 1.54 1.53 1.53 1.53 1.52 1.52 1.52 1.52

(0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

MMA
1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

OLS
3.53 1.16 1.03 0.97 0.94 0.92 0.91 0.90 0.89 0.88

(0.45) (0.04) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

S2M2R
1.06 0.98 0.94 0.92 0.91 0.90 0.89 0.88 0.88 0.88

(0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

Group-MTL
1.09 1.01 0.96 0.93 0.92 0.91 0.90 0.89 0.89 0.88

(0.04) (0.04) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

GO-MTL
1.11 0.98 0.94 0.92 0.92 0.91 0.90 0.90 0.89 0.89

(0.04) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

MTL-FEAT
1.05 0.99 0.94 0.92 0.91 0.90 0.89 0.88 0.88 0.88

(0.04) (0.04) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

MTRL
1.01 0.97 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.93

(0.04) (0.03) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

p-MSSL
1.02 0.94* 0.90* 0.89* 0.88* 0.88* 0.87* 0.87* 0.87* 0.86*

(0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

p-MSSLcop
0.98* 0.93* 0.90* 0.89* 0.88* 0.88* 0.87* 0.87* 0.87* 0.87*
(0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

r -MSSL
1.02 0.94* 0.91* 0.89* 0.89* 0.88* 0.87* 0.87* 0.87* 0.86*

(0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

r -MSSLcop
1.00 0.93* 0.90* 0.89* 0.88* 0.88* 0.87* 0.87* 0.87* 0.87

(0.03) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

Table 4.2: Mean and standard deviation over 30 independent runs for several amounts of
monthly data used for training. The symbol “∗” indicates statistically significant (paired t-test
with 5% of significance) improvement when compared to the best non-MSSL algorithm. MSSL
with Gaussian copula provides better prediction accuracy.
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North America

Algorithms
Months

12 24 36 48 60 72 84 96 108 120

Best-ESM
3.85 3.75 3.70 3.68 3.64 3.64 3.61 3.60 3.60 3.58

(0.07) (0.05) (0.04) (0.04) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)

MMA
2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94

(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

OLS
10.06 3.37 2.96 2.79 2.69 2.64 2.59 2.56 2.54 2.53
(1.16) (0.09) (0.07) (0.05) (0.03) (0.04) (0.02) (0.02) (0.02) (0.03)

S2M2R
3.14 2.79 2.70 2.64 2.59 2.56 2.54 2.52 2.51 2.50

(0.17) (0.05) (0.05) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)

Group-MTL
2.83 2.69 2.64 2.60 2.57 2.54 2.52 2.51 2.50 2.50

(0.13) (0.04) (0.04) (0.03) (0.02) (0.03) (0.02) (0.01) (0.02) (0.02)

GO-MTL
3.02 2.73 2.63 2.58 2.53 2.51 2.49 2.49 2.48 2.48

(0.15) (0.05) (0.05) (0.04) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)

MTL-FEAT
2.76 2.62 2.59 2.57 2.53 2.52 2.50 2.49 2.49 2.48

(0.12) (0.04) (0.04) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02)

MTRL
2.93 2.83 2.78 2.81 2.75 2.77 2.75 2.76 2.75 2.77

(0.17) (0.10) (0.09) (0.09) (0.04) (0.05) (0.04) (0.04) (0.05) (0.04)

p-MSSL
2.71* 2.58* 2.53* 2.53* 2.49* 2.50* 2.49 2.49 2.48 2.49
(0.11) (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)

p-MSSLcop
2.71* 2.57* 2.52* 2.52* 2.49* 2.49* 2.48* 2.48* 2.47 2.48
(0.11) (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)

r -MSSL
2.71* 2.58* 2.53* 2.53* 2.49* 2.49* 2.49 2.48 2.48 2.49
(0.11) (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)

r -MSSLcop
2.71* 2.57* 2.52* 2.52* 2.48* 2.49* 2.48* 2.48* 2.47* 2.48
(0.11) (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)

Table 4.3: Mean and standard deviation over 30 independent runs for several amounts of
monthly data used for training. The symbol ”∗” indicates statistically significant (paired t-
test with 5% of significance) improvement when compared to the best contender. MSSL with
Gaussian copula provides better prediction accuracy.
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learning methods, as shown in Figure 4.8, similar behavior is observed. For all experiments with
different periods of past measurements, r-MSSLcop presented smaller RMSE than the other four
MTL methods. Again, it has presented smaller sample complexity than the MTL contenders.
It indicates that for scenarios where a limited period of measurements of a climate variable of
interest is available, r-MSSLcop appears as potential tool.
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Figure 4.8: South (left) and North America (right) mean RMSE. Similarly to what was observed
in Figure 4.7, r-MSSLcop has a smaller sample complexity than the four well-known multitask
learning methods, for the problem of ESMs ensemble.

Similar behavior can be observed in North America dataset, except for the fact
that MMA does much better than Best-ESM for all training sample settings. Again, all the
four MSSL instantiations provided better future temperature projection. We can also note
that the residual-based structure dependence modeling with Gaussian Copula, r -MSSLcop, pro-
duced slightly better results than the other three MSSL instantiations. As will be left clear in
Figures 4.9 and 4.11, residual-based MSSL coherently captures related geographical locations,
indicating that it can be used as an alternative to parameter-based task dependence modeling.

Figure 4.9 shows the precision matrix estimated by the r -MSSLcop algorithm and
the Laplacian matrix assumed by S2M2R in both South and North America. Blue dots means
negative entries in the matrix, while red, positive. Interpreting the entries of the matrix in
terms of partial correlation, Ωij < 0 means positive partial correlation between θi and θj, while
Ωij > 0 means negative partial correlation. Not only is the precision matrix for r -MSSLcop able
to capture the relationship among geographical locations’ immediate neighbors (as in a grid
graph) but it also recovers relationships between locations that are not immediate neighbors.
The plots also provide an information of the range of neighborhood influence, which can be
useful in spatial statistics analysis.
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Figure 4.9: Laplacian matrix (on grid graph) assumed by S2M2R and the precision matrix
learned by r -MSSLcop on both South and North America. r -MSSLcop can capture spatial rela-
tions beyond immediate neighbors. While South America is densely connected in the Amazon
forest area (corresponding to the top left corner) along with many spurious connections, North
America is more spatially smooth.

The RMSE per geographical location for r -MSSLcop and three common approaches
used in climate sciences, MMA, Best-ESM, and OLS, are shown in Figures 4.10. As previously
mentioned, South and North America have a diverse climate and not all of the ESMs are
designed to take into account and capture this scenario. Hence, averaging the model outputs,
as done by MMA, reduces prediction accuracy. On the other hand r -MSSLcop performs better
because it learns a more appropriate weight combination on the model outputs and incorporates
spatial smoothing by learning the task relationship.

Figure 4.11 presents the dependence structure estimated by r -MSSLcop for South
and North America datasets. Blue connections indicate dependent regions.

We immediately observe that locations in the northwest part of South America are
densely connected. This area has a typical tropical climate and comprises the Amazon rainforest
which is known for having hot and humid climate throughout the year with low temperature
variation (Ramos, 2014). The cold climates which occur in the southernmost parts of Argentina
and Chile are clearly highlighted. Such areas have low temperatures throughout the year, but
there are large daily variations (Ramos, 2014). An important observation can be made about
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Figure 4.10: [Best viewed in color] RMSE per location for r -MSSLcop and three common meth-
ods in climate sciences, computed using 60 monthly temperature measures for training. It
shows that r -MSSLcop substantially reduces RMSE, particularly in Northern South America
and Northwestern North America.

South America west cost, ranging from central Chile to Venezuela passing through Peru which
has one of the driest deserts in the world. These areas are located to the left side of Andes
Mountains and are known for arid climate. The average model is not performing well on this
region compared to r -MSSLcop. We can see the long lines connecting these coastal regions,
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which probably explains the improvement in terms of RMSE reduction achieved by r -MSSLcop.
The algorithm uses information from related locations to enhance its performance on these
areas.

In the structure learned for North America, a densely connected area is also observed
in the northeast part of North America, particularly the regions of Nunavut and North Quebec,
which are characterized by their polar climate, with extremely severe winters and cold summers.
Long connections between Alaska and regions from Northwestern Canada, which share similar
climate patterns, can also be seen. Again, the r -MSSLcop algorithm had no access to the
latitude and longitude of the locations during the training phase. r -MSSLcop also identified
related regions in the Gulf of Mexico. We hypothesize that no more connections were seen due
to the high variability in air and sea surface temperature in these area (Twilley, 2001), that in
turn has a strong impact on Gulf of Mexico costal regions.

Figure 4.12 presents the dependency structure using a chord diagram. Each point
on the periphery of the circle is a location in South America and represents the task of learning
to predict temperature at that location. The locations are arranged serially on the periphery
according to the respective countries. We immediately observe that the locations in Brazil
are heavily connected to parts of Peru, Colombia and parts of Bolivia. These connections
are interesting as these parts of South America comprise the Amazon rainforest. We also
observe that locations within Chile and Argentina are less densely connected to other parts of
South America. A possible explanation could be that while Chile which includes the Atacama
Desert is a dry region located to the west of the Andes, Argentina, especially the southern part
experiences heavy snowfall which is different from the hot and humid rain forests or the dry
and arid deserts on the west coast. Both these regions experience climatic conditions which are
disparate from the northern rain forests and from each other. The task dependencies estimated
from the data reflect this disparity.

MSSL sensitivity to initial values of Θ

As discussed earlier, the MSSL algorithms may be susceptible to the choice of initial
values of the parameters Ω and Θ, as the optimization function (4.13) is not jointly convex on
Ω and Θ. In this section we analyze the impact of different parameter initializations on the
RMSE and the number of non-zero entries in the estimated Ω and Θ parameters.

Table 4.4 shows the mean and standard deviation over 10 independent runs with
random initialization of Θ in the interval [-0.5,0.5] for the South America dataset. For the Ω
matrix we started with an identity matrix, as it is reasonable to assume tasks independence
beforehand. The results showed that the solutions are not sensitive to initial values of Θ. The
largest variation was found in the number of non-zero entries in the Ω matrix for North America
dataset. However, it corresponds to 0.07% of the average number of non-zero entries and was
not enough to significantly alter the RMSE of the solutions. Figure 4.13 shows the convergence
of p-MSSL for several random initializations of Θ. We note that in all runs the cost function
decreases smoothly and similarly to each other, showing the stability of the method.

4.4.2 Classification

We test the performance of the proposed p-MSSL algorithm on the five datasets (six
problems) decribed below. Recall that r-MSSL can not be applied for classification problems,
once it relies on a Gaussian assumption of the residuals. This is currently the subject of an
ongoing work. All datasets were standardized, then all features have zero mean and standard
deviation one.
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South America

● ●

● ●

● ● ●

● ● ●
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Figure 4.11: Relationships between geographical locations estimated by the r -MSSLcop algo-
rithm using 120 months of data for training. The blue lines indicate that connected locations
are conditionally dependent on each other. As expected, temperature is very spatially smooth,
as we can see by the high neighborhood connectivity, although some long range connections are
also observed.

Synthetic
South North

America America
RMSE 1.14 (±2e-6) 0.86 (±0) 2.46 (±1.6e-4)

# non-zeros in Θ 345 (±0) 2341 (±0.32) 4758 (±2.87)
# non-zeros in Ω 55(±0) 4954 (±0.63) 73520 (±504.4)

Table 4.4: p-MSSL sensitivity to initial values of Θ in terms of RMSE and number of non-zero
entries in Θ and Ω.

• Landmine Detection: Data from 19 different landmine fields were collected, which
have distinct types of characteristics. Each object in a given dataset is represented by
a 9-dimensional feature vector and the corresponding binary label (1 for landmine and
0 for clutter) (Xue et al., 2007b). The feature vectors are extracted from radar images,
concatenating four moment-based features, three correlation-based features, one energy
ratio feature and one spatial variance feature. The goal is to classify between mine or
clutter.

• Spam Detection: E-mail spam dataset from ECML 2006 discovery challenge9. This
dataset consists of two problems: In Problem A, we have e-mails from 3 different users
(2500 e-mails per user); whereas in Problem B, we have e-mails from 15 distinct users
(400 e-mails per user). We performed feature selection to get the 500 most informative
variables using the Laplacian score feature selection algorithm (He et al., 2006). The goal
is to classify between spam vs. ham. For both problems, we create different tasks for
different users.

9http://www.ecmlpkdd2006.org/challenge.html
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Figure 4.12: [Best viewed in color] Chord graph representing the structure estimated by the
r-MSSL algorithm.
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Figure 4.13: Convergence behavior of p-MSSL for distinct initializations of the weight matrix
Θ.

• MNIST dataset10 consists of 28×28-size images of hand-written digits from 0 through
9. We transform this multiclass classification problem by applying the all-versus-all de-
composition, leading to 45 binary classification problems (tasks). After trained, when a
new test sample arrives, a voting is performed among the classifiers and the class with
the maximum number of votes is chosen. The number of samples for each classification
problem is about 15000.

• Letter: The handwritten letter dataset11 consists of eight tasks, with each one being a
binary classification of two letters: a/g, a/o, c/e, f/t, g/y, h/n, m/n and i/j. The input for
each data point consists of 128 features representing the pixel values of the handwritten
letter. The number of data points for each task varies from 3057 to 7931.

10http://yann.lecun.com/exdb/mnist/
11http://ai.stanford.edu/∼btaskar/ocr/
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Algorithms Landmine
Spam Spam

MNIST Letter
Yale

3-users 15-users faces

LR
6.01 6.62 16.46 9.80 5.56 26.04

(±0.37) (±0.99) (±0.67) (±0.19) (±0.19) (±1.26)

CMTL
5.98 3.93 8.01 2.06 8.22 9.43

(±0.32) (±0.45) (±0.75) (±0.14) (±0.25) (±0.78)

MTL-FEAT
6.16 3.33 7.03 2.61 11.66 7.15

(±0.31) (±0.43) (±0.67) (±0.08) (±0.29) (±1.60)

Trace
5.75 2.65 5.40 2.27 5.90 7.49

(±0.28) (±0.32) (±0.54) (±0.09) (±0.21) (±1.72)

p-MSSL
5.68 1.90* 6.55 1.96* 5.34* 9.58

(±0.37) (±0.27) (±0.68) (±0.08) (±0.19) (±0.91)

p-MSSLcop
5.68 1.77* 5.32 1.95* 5.29* 5.28*

(±0.35) (±0.29) (±0.45) (±0.08) (±0.19) (±0.45)

Table 4.5: Average classification error rates and standard deviation over 10 independent runs
for all methods and datasets considered. Bold values indicate the best value and the symbol “*”
means significant statistical improvement of the MSSL algorithm in relation to the contenders
at α = 0.05.

• Yale-faces: The face recognition dataset12 contains 165 grayscale images with dimension
32x32 pixels of 15 individuals. Similar to MNIST, the problem is also transformed by
all-versus-all decomposition, totalling 105 binary classification problems (tasks). For each
task only 22 samples are available.

Baseline algorithms: Four baseline algorithms were considered in the experiments and the
regularization parameters for all algorithms were selected using cross-validation from the set
{0.01, 0.1, 1, 10, 100}. The algorithms are:

1. Logistic Regression (LR): learns separate logistic regression models for each task.

2. MTL-FEAT (Argyriou et al., 2007): employs an `2,1-norm regularization term to cap-
ture the task relationship from multiple related tasks constraining all models to share a
common set of features.

3. CMTL (Zhou et al., 2011a): incorporates a regularization term to induce clustering
between tasks and then share information only to tasks belonging to the same cluster.

4. Low rank MTL (Abernethy et al., 2006): assumes that related tasks share a low di-
mensional subspace and applies a trace regularization norm to capture that relation.

Results: Table 4.5 shows the results obtained by each algorithm for all datasets. The results
are obtained over 10 independent runs using a holdout cross-validation approach, taking 2/3 of
the data for training and 1/3 for test. The performance of each run is measured by the average
of the performance of all tasks.

For all datasets p-MSSLcop presented better results than the contenders and the
difference is statistically significant for the most of the datasets. The three MTL methods

12http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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presume the structure of the matrix Θ, which may not be a proper choice for some problems.
Possibly, such disagreement in the structure of the problem explains the poor results in some
datasets.

Focusing the analysis on p-MSSL and the copula version, p-MSSLcop, their results
are relatively similar for most of the dataset, except for Yale-faces, where the difference is quite
large. The two algorithms differ only in the way the inverse covariance matrix Ω is computed.
One hyphotesis for p-MSSLcop superiority on Yale-faces dataset is that it may have captured
hidden important dependencies among tasks, as the Copula Gaussian model can capture a
wider class of dependencies than traditional Gaussian graphical models.

For the Yale-faces dataset, which contains the smallest number of data available
for training, all the MTL algorithms obtained considerable improvement compared to the tra-
ditional single task learning approach (LR), corroborating with the assertion that MTL ap-
proaches are particularly suitable for problems with few data samples.

Figure 4.14 shows the behavior of each algorithms when the number of labeled
samples for each task varies. MTL algorithms have better performance compared to LR when
there are few labeled samples available. p-MSSL also gives better results for all ranges of sample
size when compared to the other algorithms.
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Figure 4.14: Average classification error obtained from 10 independent runs versus number of
training data points for all tested methods on Spam-15-users dataset.

In the Landmine detection dataset, samples from tasks 1-10 were collected at foliated
regions and 11-19 are collected at regions that are bare earth or desert (these demarcations
are good, but not absolutely precise, since some barren areas have foliage, and some largely
foliated areas have bare soil as well). Therefore we expect two dominant clusters of tasks,
corresponding to the two different types of ground surface conditions. In Figure 4.15 we show
the graph structure representing the precision matrix estimated by p-MSSL. One can see that
tasks from foliate regions (1-10) are densely connected to each other while tasks with data input
from desert areas (11-19) also form a cluster.

4.5 Chapter Summary

In this chapter we proposed a multitask learning framework which comprises meth-
ods for classification and regression problems. Our proposed framework simultaneously learns
the tasks and their relationship, with the task dependences defined as edges in an undirected
graphical model. The formulation allows the direct extension of the graphical model to the
recently developed semiparametric Gaussian copula models. As such model does not rely on



90

Figure 4.15: Graph representing the dependency structure among tasks captured by precision
matrix estimated by p-MSSL. Tasks from 1 to 10 and from 11 to 19 are more densely connected
to each other, indicating two clusters of tasks.

the Gaussian assumption of task parameters, it gives more flexibility to capture hidden task
conditional independence, thus helping to improve prediction accuracy. The problem formula-
tion leads to a biconvex optimization problem which can be efficiently solved using alternating
minimization. We show that the proposed framework is general enough to be specialized to
Gaussian models and generalized linear models. Extensive experiments on benchmark and cli-
mate datasets for regression tasks and real-world datasets for classification tasks illustrate that
structure learning not only improves multitask prediction performance, but also captures a set
of relevant qualitative behaviors among tasks.
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Chapter 5
Multilabel classification with Ising Model
Selection

“ What we observe is not nature itself, but nature exposed to our method of
questioning. ”

Werner Heisenberg

A common way of attacking multilabel classification problems is by splitting it into a
set of binary classification problems, then solving each problem independently using traditional
single-label methods. Nevertheless, by learning classifiers separately the information about the
relationship between labels tends to be neglected. Built on recent advances in structure learning
in Ising-Markov Random Fields (I-MRF), we propose a multilabel classification algorithm that
explicitly estimate and incorporate label dependence into the classifiers learning process by
means of a sparse convex multitask learning formulation. Extensive experiments considering
several existing multilabel algorithms indicate that the proposed method, while conceptually
simple, outperforms the contenders in several datasets and performance metrics. Besides that,
the conditional dependence graph encoded in the I-MRF provides a useful information that
can be used in a posterior investigation regarding the reasons behind the relationship between
labels.

5.1 Multilabel Learning

In multilabel (ML) classification a single data sample may belong to many classes at
the same time, as opposed to an exclusive single label usually adopted in traditional multi-class
classification problems. For example, an image which contains trees, sky, and mountain may
belong to landscape and mountains categories simultaneously; a single gene may be related
to a set of diseases; a music/movie may belong to a set of genres/categories; and so on. One
can see that multilabel learning includes both binary and multi-class classification problems as
specific cases. Thus, such general aspect makes it more challenging then traditional classification
problems.

Common strategies to attack ML classification problems are (Madjarov et al., 2012):
(i) algorithm adaptation, and (ii) problem transformation. In the former, well-known learning
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algorithms such as SVM, neural networks, and decision trees are extended to deal with ML
problems. In the latter strategy, the ML problem is decomposed into m binary classification
problems and each one is solved independently using traditional classification methods. This
is known as Binary Relevance (Tsoumakas and Katakis, 2007) in ML literature. However,
when solving each binary classification problem independently, potential dependence among
the labels are neglected. And this dependence tends to be very helpful particularly when a
limited amount of training data is available.

There have been a number of attempts to incorporate label dependence information
in ML algorithms, and they will be properly discussed in Section 5.4. We anticipate that, in
most of them, graphical models are used to model label dependence. However, these graphical
models usually rely on inference procedures which are either intractable for general graphs or
very slow in high-dimensional problems.

Building upon recent advances in structure learning in Ising-Markov Random Fields
(I-MRF) (Ravikumar et al., 2010), we propose a multilabel classification method capable of
estimating and incorporating the hidden label dependence structure into the classifier learning
process. The method involves two steps: (i) label dependence modelling using I-MRF; and
(ii) joint learning of all binary classifiers in a regularized sparse convex multitask learning
formulation, where classifiers corresponding to dependent labels in I-MRF are encouraged to
share information.

Class labels are modeled as binary random variables and the interaction structure as
an I-MRF, so that the I-MRF captures the conditional dependence graph among the labels. The
problem of learning the labels (tasks) dependence reduces to the problem of structure learning
in the Ising model, on which considerable progress has been made in recent years (Ravikumar
et al., 2010; Jalali et al., 2011; Bresler, 2015). The conditional dependence undirected graph
is plugged into a convex sparse MTL formulation, for which efficient first-order optimization
methods can be applied (Beck and Teboulle, 2009; Boyd et al., 2011). The key benefits of the
method proposed in this chapter are:

• a framework for multilabel classification problems that explicitly captures labels depen-
dence employing a probabilistic graphical model (I-MRF) for which efficient inference
procedures are available;

• we employed a stability selection procedure to identify persistent label dependencies (con-
nections) in the undirected graph associated with I-MRF;

• our joint binary classifiers learning formulation is general enough to include any binary
classification loss function (e.g. logistic and hinge);

• we impose sparsity in the coefficient vectors of the binary classifiers, so that the most im-
portant discriminative features are automatically selected, resulting in more interpretable
models.

5.2 Ising Model Selection

In Chapter 3, we formally presented Ising Models and discussed the recent advances
in structure learning of such models. The method proposed in this chapter is built on these
models.

First, a quick refresh of the Ising model definition. Let G = (V , E) be a graph with
vertex set V = {1, 2, ...,m} and edge set E ⊂ V ×V , and a parameter Ωij ∈ R. The Ising model
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on G is a Markov random field with distribution given by

p(X|Ω) =
1

Z(Ω)
exp

 ∑
(i,j)∈E

ΩijXiXj

 , (5.1)

where the partition function is

Z(Ω) =
∑

X∈{−1,1}m
exp

 ∑
(i,j)∈E

ΩijXiXj

 , (5.2)

and Ω is a matrix with all parameters for each variable i, ωi, as columns. Zero entries in the Ω
matrix indicate the lack of edges in the graph G, and also that the two corresponding binary
random variables are independent given the others.

Structure learning in Ising models has seen a significant advance in the recent years
and many algorithms have been proposed for the problem (Ravikumar et al., 2010; Jalali et al.,
2011; Bresler, 2015). Here, we adopted the neighborhood-based method proposed in Ravikumar
et al. (2010) and discussed in Chapter 3, which basically proceed as follows. For all variables
r = 1, ...,m, the corresponding parameter ωr, with Ω = [ω1,ω2, ...,ωm], is obtained by

ωr = arg min
ωr

{
logloss(X\r, Xr,ωr) + λ‖ωr‖1

}
(5.3)

where logloss(·) is the logistic loss function and λ > 0 is a penalty parameter. The algorithm
estimates the neighborhood for each node independently. Consequently, the Lasso problems
are independent to each other and can be performed in parallel.

5.3 Multitask learning with Ising model selection

This section contains a technical exposition of the proposed Ising Multitask Structure
Learning (I-MTSL) algorithm, which consists of two main steps:

1. estimation of the graph representing the dependence among labels, and

2. estimation of the parameters for all single-label classifier, where the problem is posed as
a convex multitask learning problem.

5.3.1 Label Dependence Estimation

Let the conditional random variables representing the labels given the input data,
Zi = yi|X, i = 1, ...,m, be binary random variables. We then assume that the joint probability
distribution of Z = (Z1, Z2, ..., Zm) follows an Ising-Markov random field. So, given a collection
of n i.i.d. samples {z(1), ..., z(n)}, where each m-dimensional vector z(i) ∈ {−1,+1}m is drawn
from the distribution (5.1), the problem is to learn the undirected graph G = (V , E) associated
with the binary Ising-Markov random field. We then use the method proposed in Ravikumar
et al. (2010) and discussed in section 3.2.2 of Chapter 3 to infer the edge set E . Recall that, in
fact, the method recovers with high probability the signed set of edges Ē , i.e., each edge takes
either the value “−1” or “+1” .

The undirected graph G encodes the conditional dependencies among the labels.
The edge absence between two nodes indicates that the corresponding labels are conditionally
independent given the other labels. Such information is crucial in multitask learning, unveiling
with whom each task shares information.
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Stability selection

As discussed in Chapter xxx, structure learning in Markov random fields is to select
the set of non-zero entries of the matrix representing the relationship among variables in the
model, e.g., the precision matrix in Gaussian MRF. In other words, this is to select the subset
of variables that are relevant to the model.

In high-dimensional data, it is common to face the case where the number of samples
is small when compared to its dimensionality (p� n). In this case, the structure learning algo-
rithms are susceptible to falsely select variables. Therefore, it is essential to have a procedure
to avoid false discoveries.

Meinshausen and Bühlmann (2010) proposed a stability selection procedure for the
variable selection problem. In the context of structure estimation in MRF, the idea is that,
instead of estimating the connections of the graph from the whole dataset, one instead applies it
several times to random subsamples of the data and chooses those connections that are selected
most frequently on the subsamples, which were called stable connections. In other words, stable
connections are those that were selected in different subsamples of data. Stability selection is
intimately associated with the concept of bagging (Breiman, 1996) and sub-bagging (Büchlmann
and Yu, 2002).

The stability selection of Meinshausen and Bühlmann (2010) is capable of elimi-
nating possible spurious label dependencies due to noise and/or random data fluctuation. If
such spurious connections are incorporated directly into the multitask learning formulation, it
can mislead the algorithm to share information among non-related tasks, which may adversely
affect the performance of the classifiers. Therefore, we applied the stability selection procedure
in our Ising-MRF structure learning problem. The algorithm proceeds as follows:

1. sub-samples of size bn/2c are generated without replacement from the training data;

2. for each sub-sample the structure learning algorithm is applied; and

3. select the persistent connections, which are those that appeared in a large fraction of
the resulting selection sets. For this, a cutoff threshold 0 < πthr < 1 is needed. In our
experiments we set πthr = 0.8, so that a connection is said to be consistent if it appears
in 80% of the graphs constructed from the sub-samples.

To the best of the authors’ knowledge, the use of stability selection procedure to
obtain the undirected graph of label dependence is a novelty of the proposal.

5.3.2 Task Parameters Estimation

Once estimated the graph G, we turn our attention to the joint learning of all single-
label classifiers.

In I-MTSL, we use the learned dependence structure among labels in an inductive
bias regularization term which enforces related tasks to have similar parameters θ. This ap-
proach is inspired by the MSSL formulation presented in Chapter 4. Tasks parameters Θ in
I-MTSL are estimated by solving:

minimize
Θ

m∑
k=1

1

nk

nk∑
i=1

LossFunc
(
xik,y

i
k,θk

)
+ tr(ΘL̄Θ>) + γ‖Θ‖1 , (5.4)

where L̄ is the signed Laplacian matrix computed from the signed edge set Ē (Kunegis et al.,
2010), LossFunc(·) is any classification loss function, such as logistic or hinge loss, and γ > 0
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is a penalization parameter. L̄ is computed as L̄ = D̄ − Ē, where D̄ ∈ Rm×m is a diagonal
matrix D̄ii =

∑
i∼j |Ēij|. As discussed in chapter 3, the signed edge set Ē is computed from

the estimated matrix Ω as follows

Ē := sign(Ω) , (5.5)

where sign(·) is the element-wise sign function. Once matrix L̄ is positive semi-definite (see
Kunegis et al. (2010)), the problem (5.4) is (non-smooth) convex. The signed Laplacian is an
extension of the ordinary Laplacian matrix when negative edges are present. Allowing negative
edges, the multitask learning method is then capable of modeling positive and negative tasks
relationships, which is not always the case in existing MTL formulations (Argyriou et al., 2008;
Obozinski et al., 2010).

The first term in the minimization problem (5.4) refers to any binary classification
loss function, such as logistic and hinge loss. The second term is the bias inductive term which
favors related tasks’ weights to be similar. The third term induces sparsity on Θ matrix, which
automatically selects the most relevant features, setting to zero weights of non-relevant ones.

The I-MTSL algorithm is outlined in Algorithm 4. Note that no iterative process is
required.

Algorithm 4: I-MTSL algorithm.

Data: {Xk, yk}mk=1. // training data for all tasks

Input: λ > 0, γ > 0. // penalty parameters chosen by cross-validation

Result: Θ, Ē. // I-MTSL estimated parameters

1 begin
2 for k ← 1 to m do
3 Ω(k,:) = argmin

θk

{
logloss(Y\k,yk,θk) + λ‖θk‖1

}
// solve a Lasso problem

4 Ē = sign(Ω) // extract signed edge set from Ω

5 L̄ = D̄ − Ē // compute signed Laplacian matrix

6 Compute Θ by solving (5.4) // solve the MTL problem

5.3.3 Optimization

For both optimization problems (5.3) and (5.4), an accelerated proximal gradient
method was used. In such class of algorithms the cost function h(x) is decomposed as h(x) =
f(x) + g(x), where f(x) is a convex and differentiable function and g(x) is convex and typically
non-differentiable. Thus, the accelerated proximal gradient iterates as follows

zt+1 := xt + κt
(
xt − xt−1

)
xt+1 := proxρtg

(
zt+1 − ρt∇f

(
zt+1

)) (5.6)

where κt ∈ [0, 1) is an extrapolation parameter and ρt is the step size. The κt parameter is

chosen as κt = (ηt − 1)/ηt+1, with ηt+1 = (1 +
√

1 + 4η2
t )/2 as in Beck and Teboulle (2009),

and ρt can be computed by a line search.
The g(x) term in both problems corresponds to the `1-norm, which has a cheap

proximity operator defined as

proxα(x) = (|xi| − α)+sgn(xi) (5.7)
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which is known as a soft-threshold operator and is interpreted element-wise. It is a simple
application of a function that can even be done in parallel. The main computation effort is in
the gradient ∇f(zt+1). Setting logistic loss as the cost function and writing (5.4) in the form
of vec(Θ) ∈ Rdm×1, the gradient of the function f(·) is computed as

∇f (vec(Θ)) = X̄>
[
vec(Y )− h

(
X̄vec(Θ)

)]
+ P

(
L̄⊗ Id

)
P>vec(Θ) (5.8)

where h(·) is the sigmoid function, P is a permutation matrix that converts the column stacked
arrangement of vec(Θ) to a row stacked arrangement. X̄ is a block diagonal matrix where the
main diagonal blocks are the task input data matrices Xk,∀k = 1, ...,m, and the off-diagonal
blocks are zero matrices. The gradient of (5.3) is simply the derivative of the logistic loss
function w.r.t. θr. This representation converts a multitask learning problem in a large single
traditional learning problem.

5.4 Related Multilabel Methods

A number of papers have explored ways of incorporating label dependence into
multilabel algorithms. The early work of McCallum (1999) used a mixture model trained via
Expectation-Maximization to represent the correlations between class labels. In Read et al.
(2011) information from other labels are stacked as features, in a chain fashion, for the binary
classifier corresponding to a specific label. Then, high importance will be given to those features
associated with correlated labels. None of these, however, explicitly model labels dependence.

Among the explicit modeling approaches, Rai and Daume (2009) present a sparse
infinite cannonical correlation analysis to capture label dependence, where a non-parametric
Bayesian prior is used to automatically determine the number of correlation components. Due
to the model complexity, the parameters estimation relies on sampling techniques which may
be slow for high-dimensional problems.

In the same spirit of our approach, many papers have employed probabilistic graph-
ical models to explicitly capture label dependence. Bayesian networks were used to model label
dependence in de Waal and van der Gaag (2007); Zhang and Zhang (2010), and Bielza et al.
(2011). However, the structure learning problem associated with Bayesian networks is known to
be NP-hard (Chickering, 1996). Markov networks formed from random spanning trees are con-
sidered in Marchand et al. (2014). Conditional random field (CRF) was used in Ghamrawi and
McCallum (2005), where the binary classifier for a given label not only considered its own data,
but also information from neighboring labels determined by the undirected graphical model
encoded into the CRF model. Bradley and Guestrin (2010) also proposed a method for effi-
ciently learning tree structures for CRFs. For general graphs, however, the inference problems
in CRF are intractable, and efficient exact inference is only possible for more restricted graph
structures such as chains and trees (Sutton and McCallum, 2011). Shahaf and Guestrin (2009)
also presented a structure learning method for a more restrict class of models known as low-
treewidth junction trees. We use a more general undirected graph, I-MRF, that can capture any
pairwise label dependence and for which efficient (and highly parallelizable) structure learning
procedures have been recently proposed. These new approaches, including Ravikumar et al.
(2010), avoid the explicit reliance of the classical structure learning approaches on inference
in the graphical model, making them computationally efficient and statistically accurate. We
have discussed recent developments on Ising model structure learning in Chapter 3. Here, the
dependence graph is plugged into a regularized MTL formulation, a paradigm which has shown
improvements in predictive performance relative to traditional machine learning methods.
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5.5 Experimental Design

In this section we present a set of experiments on multilabel classification to assess
the performance of the proposed I-MTSL algorithm.

5.5.1 Datasets Description

For the experiments we have chosen eight well-known datasets in the multilabel clas-
sification literature. Those datasets are from different application domains and have different
number of samples, labels, and dimensions. Table 5.1 shows a description of the datasets. For
a detailed characterization, refer to Madjarov et al. (2012). All datasets were downloaded from
Mulan webpage1.

Dataset Domain # of samples # of features # of labels

Emotions music 593 72 6
Scene image 2407 294 6
Yeast biology 2417 103 14
Birds audio 645 260 19
Genbase biology 662 1186 27
Enron text 1702 1001 53
Medical text 978 1449 45
CAL500 music 502 68 174

Table 5.1: Description of the multilabel classification datasets.

5.5.2 Baselines

Five well known methods were considered in the comparison: three state-of-the-
art MTL algorithms: CMTL (Zhou et al., 2011a), Low rank MTL (Ji and Ye, 2009), and
MTL-FEAT (Argyriou et al., 2008); besides two popular ML algorithms: Binary Relevance
(BR) (Tsoumakas and Katakis, 2007) and Classifier Chain (CC) (Read et al., 2011). CC
algorithm incorporates other labels information as covariates in a chain fashion, then label
dependence information is explored in the classifier parameter estimation process. For CMTL,
LowRank, and MTL-FEAT we used the MALSAR (Zhou et al., 2011b) package. The remaining
methods were implemented by the author. The I-MTSL code is available for download at:
https://bitbucket.org/andreric/i-mtsl.

5.5.3 Experimental Setup

Logistic regression was used as the base classifier for all algorithms. Z-score nor-
malization was applied to all datasets, then covariates have zero mean and standard deviation
one.

For all methods, parameters were chosen following the same procedure. The available
dataset was split in training, validation and test subsets, with distribution of 60%, 20%, and
20%, respectively. The validation set was used to help selecting proper values for the penalty
parameters λ and γ. A grid containing ten equally spaced values in the interval [0,5] was used

1http://mulan.sourceforge.net/datasets-mlc.html

https://bitbucket.org/andreric/i-mtsl
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for each parameter. The parameter with the best average accuracy over all binary classification
problems in the validation set was used in the test set. The results presented in the next sections
are based on ten independent runs of each algorithm.

5.5.4 Evaluation Measures

To assess the performance of multilabel classifiers it is essential to consider multiple
and contrasting evaluation measures due to the additional degrees of freedom that the multilabel
setting introduces (Madjarov et al., 2012). Thus, six different measures were used: accuracy, 1
- Hamming loss (1-HL), macro-F1, precision, recall, and F1-score.

In the definitions below, yi denotes the set of true labels of example xi and f(xi)
denotes the set of predicted labels for the same examples. All definitions refer to the multilabel
setting.

Accuracy for a single example xi is defined by the Jaccard similarity coefficient
between the label sets f(xi) and yi and the accuracy is the average across all examples:

accuracy(f) =
1

n

n∑
i=1

|f(xi) ∩ yi|
|f(xi) ∪ yi|

. (5.9)

Hamming loss evaluates how many times an example-label pair is misclassified, i.e.,
label not belonging to the example is predicted or a label belonging to the example is not
predicted

hamming loss(f) =
1

n

n∑
i=1

1

m
|f(xi)∆yi| (5.10)

where ∆ means the symmetric difference between two sets, n is the number of examples and
m is the total number of possible class labels.

Precision is defined as

precision(f) =
1

n

n∑
i=1

|f(xi) ∩ yi|
|yi|

. (5.11)

Recall is defined as

recall(f) =
1

n

n∑
i=1

|f(xi) ∩ yi|
|f(xi)|

. (5.12)

F1 score is the harmonic mean between precision and recall and is defined as

F1(f) =
1

n

n∑
i=1

2× |f(xi) ∩ yi|
|f(xi)|+ |yi|

(5.13)

and its value is an average over all examples in the dataset. F1 reaches its best value at 1 and
worst score at 0.

Macro-F1 is the harmonic mean between precision and recall, where the average is
calculated per label and then averaged across all labels. If pk and rk are the precision and recall
for all labels lk ∈ f(xk) from lk ∈ yk the macro-F1 is

macro F1(f) =
1

m

m∑
k=1

2× pk × rk
pk + rk

(5.14)
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Macro-F1 is label-based measure, that is, it is computed over the labels k = 1, ...,m, while the
previous measures are example-based and are computed over the samples i = 1, ..., n.

Here, we show the complement of HL for easy of exposition (all the measures then
produce a number in the interval [0,1], with higher values indicating better performance).

5.6 Results and Discussion

The results for all datasets and evaluation measures are shown in Figures ??, ??,
and ??. As expected, the performance of the algorithms varies as we look at different evaluation
measures.

BR shows the worst performance among the algorithms for almost all datasets/metrics,
except for Emotions dataset, which has the smallest number of labels/attributes. However, the
difference is more pronounced as we have more labels, such as in Medical, Enron, and CAL500
datasets. It indicates that the information regarding dependence among labels, indeed, helps
to improve performance.

The use of several performance measures is intended to show the distinct character-
istics of the algorithms. As we can see in the plots, many algorithms do well for some metrics,
while do poorly in others. To have an overall performance investigation we propose the use of
a metric to compare all algorithms’ relative performance. To do so, we use a measure inspired
by a well-known metric in the literature of learn to rank: Discounted Cumulative Gain (DCG)
(Järvelin and Kekäläinen, 2002). Such measure is referred to here as relative performance (RP).

To obtain RP, first we compute the ranking r of all algorithms for a specific dataset/metric,
then for a given algorithm a, RP (a) is obtained as:

RP (a) =

{
1 , ra = 1
1

log2r(a)
, otherwise.

(5.15)

It basically gives higher values to algorithms at the top with a logarithm discount as the rank
goes down. Similar to the DCG definition in Järvelin and Kekäläinen (2002), RP also gives
equal importance to the first and second best algorithms. RP can be seen as a special case of
the DCG metric, where only one relevant (1) document is returned at position r and all others
are non-relevant (0), given a query. RP value ranges from 0 to 1, with 1 representing that the
algorithm figured at the top. The logarithm discount in RP induces a smoother penalization
to algorithm’s rank than when considering the ranks directly. Table 5.2 shows the RP values
computed over all datasets for all pairs algorithm/metric.

I-MTSL obtained better accuracy when compared to the remaining methods, as it
figures at the top of all the datasets. In essence, the accuracy computes the Jaccard similarity
coefficient between the set of labels predicted by the algorithm and the observed labels. The
algorithm is also at the top for the majority of the datasets regarding 1-Hamming Loss, macro-
F1, precision, and F1-score. Thus, I-MTSL obtained more balanced solutions, figuring at the
top for the most of the analyzed metrics, except for recall. CMTL, LowRank, and MTF-FEAT,
on the other hand, yielded the highest recall, but the lowest precision. Notice that it is easy to
increase recall by predicting more 1’s, however it may hurt accuracy, precision and F1-score.
As the class imbalance problem is recurrent in multilabel classification, it may deceive the
algorithm to polarize the prediction to a certain class.

In terms of macro-F1, I-MTSL also outperforms the contenders. Macro-F1 evaluates
the algorithm performance across the labels, not across samples. It shows how good is an
algorithm to classify labels independently. BR clearly has the worst result, which was expected,
as BR is the only algorithm that does not use label dependence information.
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1-Hamming Loss Accuracy Macro-F1 Recall Precision F1

BR
0.39 0.54 0.46 0.41 0.70 0.54
±0.02 ±0.09 ±0.09 ±0.04 ±0.21 ±0.09

CC
0.65 0.77 0.69 0.55 0.95 0.77
±0.25 ±0.22 ±0.29 ±0.21 ±0.14 ±0.22

CMTL
0.65 0.80 0.74 0.63 0.54 0.80
±0.25 ±0.25 ±0.25 ±0.26 ±0.06 ±0.25

Trace (low rank)
0.64 0.41 0.51 0.86 0.41 0.41
±0.26 ±0.02 ±0.22 ±0.25 ±0.02 ±0.02

MTL-Features
0.79 0.43 0.73 0.95 0.41 0.43
±0.26 ±0.04 ±0.27 ±0.14 ±0.02 ±0.04

I-MTSL
0.82 1.00 0.81 0.55 0.95 1.00
±0.22 ±0 ±0.24 ±0.08 ±0.14 ±0

Table 5.2: Mean and standard deviation of RP values. I-MTSL has a better balanced perfor-
mance and is among the best algorithms for the majority of the metrics.

Figure 5.4 presents examples of signed Laplacian matrices computed from the graph
associated with the Ising model structure learned by I-MTSL for four of the datasets considered
in the experiments. It is interesting to note the high sparsity of the matrices, showing that
only a few tasks are conditionally dependent on each other and that structure led to a better
classification performance. For some datasets, such as Enron, Medical, and Genbase we can
clearly see a group of labels which are mutually dependent. Such matrix can be very useful in
a posterior investigation regarding the reasons underlying those dependent labels.

5.7 Chapter Summary

We presented a method for multilabel classification problems that is capable of
estimating and incorporating the inherent label dependence structure into the classifier learning
process through a convex multitask learning formulation.

The multitabel problem is tackled with the binary relevance transformation and
the resulting multiple binary classification problems are shaped into the multitask learning
framework. The multitask learning formulation is inspired from the MSSL method introduced
in Chapter 4.

A novelty of our method is to model the label dependencies with a Ising Markov Ran-
dom field, which is a flexible pairwise probabilistic graphical model. Class labels are modeled
as binary random variables and the interaction among the labels as an Ising-Markov Random
Field (I-MRF), so that the structure of the I-MRF captures the conditional dependence graph
among the labels. Additionally, a stability selection procedure is used to choose only stable
label dependencies (graph connections). The problem of learning the label dependencies then
reduces to the problem of structure learning in the Ising model, to which efficient methods have
been recently proposed.

A comprehensive set of experiments on multilabel classification were carried out to
demonstrate the effectiveness of the algorithm. Results showed its superior performance in sev-
eral datasets and multiple evaluation metrics, when compared to already proposed multilabel
and MTL algorithms. The algorithm exhibits the best compromise considering all performance
metrics. Also, the learned graph associated with the I-MRF can be used in a posterior investi-
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Figure 5.4: Signed Laplacian matrices of the undirected graph associated with I-MTSL using
stability selection procedure, for Yeast, Enron, Medical, and Genbase datasets. Black and gray
squares mean positive and negative relationship respectively. The lack of squares means entries
equals to zero. Note the high sparsity and the clear group structure among labels.

gation regarding the reasons behind the relationship between labels.
Learning label dependence using more general graphical models (such as the ones

described in Section 5.2) and embedding it into the binary relevance classifiers learning process
will be the subject of future work.
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Chapter 6
Hierarchical Sparse and Structural Multitask
Learning

“ As complexity rises, precise statements lose meaning and meaningful state-
ments lose precision. ”

Loft A. Zadeh

In this chapter, we present a hierarchical multitask learning (MTL) formulation,
where each task is a multitask learning problem. We call this new task as super-task. This is
motivated by the problem of combining Earth System Model outputs for the projection of mul-
tiple climate variables projection. ESMs ensemble synthesis for each climate variable is handled
by an MTL endowed with a task dependencies modeling method. Group lasso regularization
is added in the task dependencies level so that we can exploit commonalities among the de-
pendence structure of different climate variables. We show that our formulation degenerates to
traditional MTL methods at certain values of regularization parameters. Experiments showed
that our approach produced similar or even better results than independent MTL methods and
significantly outperformed baselines for the problem.

6.1 Multitask Learning in Climate-Related Problems

Future projections of climate variables such as temperature, precipitation, pressure,
etc. are usually produced through computer simulations. These computer programs implement
mathematical models developed to emulate real climate systems and their interactions, which
are known as Earth System Models (ESMs). Given a set of computer simulated projections, a
single projection is built as a combination (ensemble) of the multiple simulated predictions.

These projections serve as basis to infer future climate change, global warming,
greenhouse gas concentration impact on Earth systems and other complex phenomena such
as El Niño Southern Oscillation (ENSO). ENSO has a global impact, ranging from droughts
in Australia and northeast Brazil, flooding in coasts of northern Peru and Ecuador, to heavy
rains over Malaysia, the Philippines, and Indonesia Intergovernmental Panel on Climate Change
(2013). Then, producing accurate projections of climate variables is a key step for anticipating
extreme events.
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In Chapter 4 we attacked the problem of combining multiple ESMs projections
from a multitask learning perspective, where building an ESMs ensemble for each geographical
location is seen as a task. It was shown that the joint estimation of an ESMs ensemble produced
more accurate projections than when the estimation was performed independently for each
location. The MTL method was able to capture the relationship among geographical locations
(tasks) and use such information to guide tasks sharing.

Modeling task relationship in multitask learning has been the focus of much research
attention Zhang and Schneider (2010); Zhang and Yeung (2010); Yang et al. (2013); Gonçalves
et al. (2014); Gonçalves et al. (2015). This is a fundamental step to sharing information
only among related tasks, while avoiding the unrelated ones that can be detrimental to the
performance of the tasks Baxter (2000). Besides the need of estimating task specific parameters
(Θ), the task dependencies structure (Ω) is also estimated from the data. The latter is usually
estimated from the former, that is, task dependencies is based on the relation of the task
parameters. Two tasks are said to be related if their parameters are related in some sense.
Examples of relatedness measures are covariance and partial-correlation.

Uncertainty in task parameters is inherent when only very few data samples are
available. As a consequence, this uncertainty is reflected in task dependencies structure, which
can misguide information sharing and, hence, being harmful to tasks performance. The problem
of estimating structure dependence of a set of random variables is known as structure learning
Rothman et al. (2008); Cai et al. (2011); Wang et al. (2013). Existing methods for the problem
guarantee to recover the true underlying dependence structure with high probability, only if
a sufficient number of data samples are available. In the MTL case, the samples are tasks
parameters and depending on the ratio of dimensionality and the number of tasks, it may not
be enough for consistently estimating structure dependence.

In this chapter, we extend the strategy of learning multiple tasks jointly where each
task is, in fact, a multitask learning problem. This new task we called super-task and the tasks of
a super-task we refer to as sub-tasks. This is motivated by the problem of Earth System Models
(ESMs) ensemble for multiple climate variables. The problem of obtaining ESMs weights for all
regions for a certain climate variable is a super-task. We add a group lasso penalty across the
precision matrices associated with the super-tasks, so that we encourage similar zero patterns.

In general words, the method proposed in this chapter is a multitask learning for-
mulation where each task is a multitask learning problem. To the best of our knowledge, this
is the first formulation involving multiple MTL problems simultaneously, conceptually viewed
as a hierarchy. It provides a new perspective for MTL, and important problems, such as ESMs
ensemble for multiple climate variables, can be posed as an instance of this formulation.

6.2 Multitask Learning with Task Dependence Estima-

tion

In Chapter 4, we presented a hierarchical Bayesian model to explicitly capture task
relatedness. Features across tasks (rows of the parameter matrix Θ) were assumed to be drawn
from a multivariate Gaussian distribution. Task relationship is then encoded in the inverse of
the covariance matrix Σ−1 = Ω, also known as precision matrix. Sparseness is desired in such
matrix, as zero entries of the precision matrix indicate conditional independence between the
corresponding two random variables (tasks). The associated learning problem (6.1) consists
of jointly estimating the task parameters Θ and the precision matrix Ω, which is done by an
alternating optimization procedure.
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minimize
Θ,Ω

m∑
k=1

L(Xk,yk,Θ)− log |Ω|+ λ0tr(ΘΩΘ>) +R(Θ,Ω)

subject to Ω � 0.

(6.1)

Note that in (6.1) the regularization penalty R(Θ,Ω) is a general penalization function, which
in the MSSL formulation in Chapter 4 was given by R(Θ,Ω) = λ1‖Θ‖1 +λ2‖Ω‖1. The solution
for (6.1) alternates between two steps which are performed until a stopping criterion is satisfied:

1. estimate task weights Θ from current estimation of Ω;

2. estimate task dependencies Ω from updated parameters Θ.

Note that initialization of Ω is required. Setting initial Ω to identity matrix, i.e., all tasks are
independent at the beginning, is usually a good start, as discussed in section 4.2.3.

In the Step 1, task dependencies information is incorporated into the joint cost func-
tion through the trace term penalty - tr(ΘΩΘ>). It helps to promote information exchange
among tasks. The problem associated with Step 2 is known as sparse inverse covariance se-
lection problem (Friedman et al., 2008) where we seek to find zero pattern in the precision
matrix.

The experiments in Chapter 4 showed that these approaches usually outperforms
MTL with pre-defined task dependencies structure for a variety of problems.

6.3 Mathematical Formulation of Climate Projection

As discussed in chapter 4, climate projections are typically made from a set of
simulated models called Earth System Models (ESMs), specially built to emulate real climate
behavior. A common projection method is to perform the combination of multiple ESMs in a
least square sense, that is, estimate a set of weights for the ESMs based on past observations.
ESMs with better performance in the past (training period) will probably have larger weights.

For a given location k the predicted climate variable (temperature, for example) for
a certain timestamp i (expected mean temperature for a certain month/year, for example) is
given by:

ŷik = xikθk + εik (6.2)

where xik is the set of values predicted by the ESMs for the k-th location in the timestamp i,
θk is the weights of each ESM for the k-th location, and εik is a residual. The set of weights
θk are estimated from a set of training data. The combined estimate yik is then used as a more
robust prediction of temperature for the k-th location in a certain month/year in the future.

Note that a set of ESMs weights are specific for a certain geographical location and
it varies for different locations. Some ESMs are more accurate for some regions/climate and
less accurate for others and the difference between weights of two locations will reflect this
behavior. The problem of ESMs ensemble then consists of solving a least square problem for
each geographical location.

In this thesis, the problem of ESMs ensemble was tackled from an MTL perspective,
where ESMs weight estimation for each geographical locations was seen as a task (least square
fitting problem). The MTL formulation is able to capture the structure relationship among the
geographical locations and use it to guide information sharing among the tasks. It produced
accurate weight estimates and, as a consequence, better predictions.
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The ESMs weights may vary for projection of different climate variables, such as
precipitation, temperature, and pressure. Then, solving a multitask learning problem for each
climate variable is required. In this chapter, we propose to deal with these multiple MTL
problems through a two-level MTL formulation where each task (super-task) is a multitask
learning problem.

6.4 Unified MSSL Formulation

In this section, we present our unified multitask learning formulation and the al-
gorithms for optimization. We refer to our method as Unified-MSSL ( U-MSSL), as it can
degenerate to the multitask learning method called MSSL proposed in Chapter 4.

Before presenting the formulation, let us introduce some useful notation. Let T be
the number of super-tasks, mk the number of tasks for the k-th super-task, d the problem
dimension, and n(t,k) the number of samples for the (t, k)-th task. We assume that all super-
tasks have the same number of tasks, i.e. m = m1 = m2 =, ...,= mt, and all tasks have the
same problem dimension d. X(t,k) ∈ Rn(t,k)×d and y(t,k) ∈ Rn(t,k)×1 are the input and output
data for the k-th task of the t-th super-task. Θ(t) ∈ Rd×m is the matrix whose columns are
the set of weights for all sub-tasks for the t-th super-task, that is, Θ(t) = [θ(t,1), ...,θ(t,m)], We
represent by {X} = X(t,k) and {Y } = y(t,k), k = 1, ...,mt; t = 1, ..., T . For the weight and
precision matrices, {Θ} = Θ(t) and {Ω} = Ω(t),∀t = 1, ..., T .

In the U-MSSL formulation, we seek to minimize the following cost function C(Γ)
with Γ = {{X}, {Y }, {Θ}, {Ω}}:

C(Γ) =
T∑
t=1

(
mt∑
k=1

L
(
X(t,k)θ(t,k),y(t,k)

)
− log |Ω(t)|+ λ0tr

(
S(t)Ω(t)

))
+R({Ω}), (6.3)

where R({Ω}) is a regularization term over the precision matrices, S(t) is the sample covariance
matrix of the task parameters for the t-th super-task. For simplicity, here we dropped the `1-
penalization on the weight matrix Θ as in the MSSL formulation. However, it can be added with
minor changes in the algorithm. For the climate problem considered, all super-tasks contain
the same number of tasks. It ensures that the precision matrices have the same dimensions
(mt ×mt). For the problem of climate variable projection we used squared loss function

L (X,θ,y) =
1

n

n∑
i=1

(θ>xi − yi)2 (6.4)

Figure 6.1 shows the hierarchy of tasks for the projection of multiple climate vari-
ables. In the super-tasks level, group lasso regularization encourage precision matrices to have
similar zero patterns. The learned precision matrices are consequently used to control with
whom each sub-task will share information.

The formulation (6.3) is a penalized cumulative cost function of the form (6.1) for
several multitask learning problems. The penalty functionR({Ω}) is to favor common structural
sparseness across the precision matrices.

Here we focus on the group lasso penalty (Yuan and Lin, 2006), which we denote by
RG, and is defined as

RG({Ω}) = λ1

T∑
t=1

∑
k 6=j

|Ω(t)
kj |+ λ2

∑
k 6=j

√√√√ T∑
t=1

Ω
(t)2

kj (6.5)



106

Ω(1)

θ(1,1)

Location 1

X(1,1),y(1,1)

...

...

θ(1,m)

Location m

X(1,m),y(1,m)

Ω(2)

θ(2,1)

Location 1

X(2,1),y(2,1)

...

...

θ(2,m)

Location m

X(2,m),y(2,m)

Ω(T )

θ(T,1)

Location 1

X(T,1),y(T,1)

...

...

θ(T,m)

Location m

X(T,m),y(T,m)

Super-tasks

Sub-tasks

Data

...

Figure 6.1: Hierarchy of tasks and their connection to the climate problem. Each super-task
is a multitask learning problem for a certain climate variable, while sub-tasks are least square
regressors for each geographical location.

where λ1 and λ2 are two nonnegative tuning parameters. The first penalty term is an `1-
penalization of the off-diagonal elements, so that non-structured sparsity in the precision ma-
trices is enforced. The larger the value of λ1, the sparser the precision matrices. The second
term of the group sparsity penalty encourages the precision matrices to have the same sparsity
pattern, that is, have zeros in the exact same positions. Group lasso does not impose any
restriction on commonness of the non-zero entries.

Note that when λ2 is set to zero, the super-tasks are decoupled in independent
multitask learning problems. We can see λ2 as a coupling parameter, as larger values pushes
the super-tasks to be coupled and small to zero values lead to decoupled super-tasks, which is
similar to the formulation of the MSSL algorithm proposed in Chapter 4.

Table 6.1 shows the correspondence between the variables in the mathematical for-
mulation of U-MSSL and the features in the climate problem. Remember that for the climate
problem the number of sub-tasks is the same for all super-tasks.

6.4.1 Optimization

Optimization problem 6.3 is not jointly convex on {Θ} and {Ω}, particularly due
to the trace term which involves both variables. We then use an alternating minimization
approach similar to the one applied for MSSL, in which we fix {Θ} and optimize for {Ω} (we
call it Ω-step), and similarly fix {Ω} and optimize for {Θ} (we call it Θ-step). Both steps now
consist of convex problems, for which efficient methods have been proposed.

The same discussion made in section 4.2.3 regarding the convergence of the alternat-
ing minimization procedure applies here. In the experiments in this chapter, 20 to 30 iterations
were required for convergence (see Figure 6.2 for an example).

Solving Θ-step

The convex problem associated with this step is defined as

minimize
{Θ}

T∑
t=1

mk∑
k=1

L
(
X(t,k)θ(t,k),y(t,k)

)
+ λ0tr

(
S(t)Ω(t)

)
. (6.6)
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Variable
Meaning in the U-MSSL

context
Meaning in the climate

problem context

T number of super-tasks number of climate variables

mt
number of sub-tasks in the

t-th super-task

number of geographical
locations (the same for all

climate variables)

X(t,k)
data input for the k-th

sub-task in the t-th
super-task

ESMs outputs (prediction)
for the t-th climate variable

in the k-th geographical
location

y(t,k)
data output for the k-th

sub-task in the t-th
super-task

observed values of the t-th
climate variable in the k-th

geographical location

θ(t,k)

parameters of the linear
regression model for the k-th

sub-task of the t-th
super-task

ESMs weights for the t-th
climate variable in the k-th

geographical location

Ω(t) precision matrix for the t-th
super-task

dependence among the ESMs
weights for all geographical

locations for the t-th climate
variable

Table 6.1: Correspondence between U-MSSL variables and the components in the joint ESMs
ensemble for multiple climate variables problem.

Considering the squared loss function, Θ-step consists of two quadratic terms, as
{Ω} are positive semidefinite matrices. Note that the optimization for each super-task weight
matrix Θ(t) are independent and can be performed in parallel. We used the L-BFGS (Liu and
Nocedal, 1989) method in the experiments.

Solving Ω-step

The Ω-step is to solve the following optimization problem

minimize
{Ω}

T∑
t=1

(
− log |Ω(t)|+ λ0tr(S(t)Ω(t))

)
+RG({Ω})

subject to Ω(t) � 0, ∀t = 1, ..., T.

(6.7)

This step corresponds to the problem joint learning of multiple Gaussian graphical
models and has been attacked by several authors (Honorio and Samaras, 2010; Guo and Gu,
2011; Danaher et al., 2014; Mohan et al., 2014). These formulations seek to minimize the penal-
ized joint negative log likelihood in the form of (6.7) and they basically differ in the penalization
term R({Ω}). Researchers have shown that the graphical models jointly estimated were able to
increase the number of edges correctly identified (true positive edges) while reducing the num-
ber of edges incorrectly identified (false positive edges), when compared to those independently
estimated. An alternating direction method of multipliers (ADMM) (Boyd et al., 2011) is used
to solve problem (6.7). See Danaher et al. (2014) for details on the method.
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Algorithm 5: Unified-MSSL algorithm.

Data: {X}, {Y}. // training data for all super-tasks

Input: λ0 > 0, λ1 > 0 and λ2 > 0. // penalty parameters chosen by cross-validation

Result: {Θ}, {Ω}. // U-MSSL’s estimated parameters

1 begin
/* Ωs are initialized with identity matrix and */

/* Θs with numbers uniformly distributed in the interval [-0.5,0.5]. */

2 Ω(t) = Imt ,∀t = 1, ..., T.

3 Θ(t) = U(−0.5, 0.5),∀t = 1, ..., T.
4 repeat
5 Update {Θ} by solving (6.6); // optimize all Θs with Ωs fixed

6 Update {Ω} by solving (6.7); // optimize all Ωs with Θs fixed

7 until stopping condition met

6.5 Experiments

In the experiments we considered the problem of producing projections for temper-
ature (at surface level) and precipitation jointly. Considering the proposed formulation we are
indicating that competent ESMs for temperature projection in some regions are also possibly
competent in related regions.

6.5.1 Dataset Description

We collected monthly temperature and precipitation data of 32 CMIP5 ESMs from
1901 to 2000. For observed data, we used University of Delaware (available on NOAA website;
http://www.noaa.gov) as observed data.

In climate domain, it is common to work with data referred to anomalies, which
is basically the difference between of the measured climate variable and a value of reference
(average on a past period of years). In our experiments, we directly work on the raw data, but
we investigate the performance of the algorithm in both seasonal and annual time scales, with
focus on winter and summer.

To get all ESMs and observed data in the same time and spatial resolution, we used
the command line tool Climate Data Operators (CDO; https://code.zmaw.de/projects/cdo).
Temperature is in degree Celsius while precipitation unit is cm.

6.5.2 Experimental Setup

Based on climate data from a certain (training) period, model parameters are es-
timated and the inference method produces its projections for the future (test). Clearly, the
length of the period of time affects the performance of the algorithm. A moving window of 20,
30 and 50 years for training were adopted and the next 10 year for test. The performance is
measured in terms of root-mean-squared error (RMSE). It is worth mention that

Seasonality is known to strongly affect climate data analysis. Winter and summer
precipitation patterns, for example, are distinct. Also, by looking at seasonal data, it becomes
easier to identify anomalous patterns, possibly useful to characterize climate phenomena as El
Niño. Researchers then usually perform separate analysis for each season (seasonal outlook).
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We extracted summer and winter data and performed climate variable projection specifically
for these seasons.

Five baseline algorithms were considered in the comparison:

1. multi-model average (MMA): set equal weights for all ESMs. This is currently per-
formed by IPCC;

2. best-ESM in training phase: note that this is not an ensemble, but a single best ESM
in terms of mean squared error;

3. ordinary least square (OLS): performed independent OLS for each location and climate
variable;

4. S2M2R (Subbian and Banerjee, 2013): can be seen as a multitask learning method with
pre-defined location dependence matrix, that is given by the graph Laplacian over a grid
graph. It incorporates spatial smoothing on ESMs weights.

5. MSSL (described in Chapter 4): apply an MTL-based technique for each climate variable
projection independently. We used the parameter-based version (p-MSSL).

All the penalization parameters of the algorithms (λ’s in p-MSSL and U-MSSL
formulations) were chosen by cross-validation, which is defined as follows. From the available
dataset for training, we selected the first 80% for training and the next 20% for validation set.
The best values in the validation were selected. For example, in the scenario with 20 years of
measurements for training, we took the first 16 years to really train the model, and the next 4
years to analyze the performance of the method using a specific setting of λ’s. We have tried
many values for λ ∈ [0,10]. Using this protocol, the selected parameter values were: S2M2R
used λ = 1000; p-MSSL λ0 = 0.1 and λ1 = 0.1; and U-MSSL λ0 = 0.1, λ1 = 0.0002, λ2 = 0.01.
Once having all penalization parameters chosen, we finally train S2M2R, p-MSSL and U-MSSL
with the whole training set and then compute their performances in the test set, which have
not been used during the cross-validation process.

6.6 Results

Before showing the results on climate variable projection, Figure 6.2 presents an
example of the convergence curve of the U-MSSL algorithm for summer with 20 years of data
for training. On the top we observe a continuous (stepwise) reduction of the cost function
6.3. The steps are due to the alternation between Θ- and Ω-optimization. The variations ∆ in
Frobenius norm of two consecutive iterations, defined as

∆Θ
(l)
1 =

∥∥∥Θ
(l)
1 −Θ

(l−1)
1

∥∥∥
F
, (6.8)

for the four matrices (Θ1, Θ2, Ω1, and Ω2) associated with the problem are show in the bottom
of Figure 6.2. Θ1 and Θ2 represent the matrix weights for precipitation and temperature,
respectively. Similar representation is used for Ω1 and Ω2. An oscillation is clearly seen,
particularly for the task dependencies matrices, but it gets smoother and smother as the number
of iterations increase.

Tables 6.2 and 6.3 show the RMSE of the projections produced by the algorithms
and the ground truth (observed precipitation and temperature).
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Figure 6.2: Convergence curve (top) and the variation of the parameters between two consec-
utive iterations of U-MSSL for the summer with 20 years of data for training.

Best-ESM OLS S2M2R MMA pMSSL U-MSSL
20 7.88 (0.44) 9.08 (0.54) 7.33 (0.68) 8.95 (0.27) 7.16 (0.43) 6.48 (0.34)

Summer 30 7.95 (0.55) 7.87 (0.63) 7.39 (0.86) 8.96 (0.26) 6.86 (0.48) 6.37 (0.29)
50 8.30 (0.71) 7.84 (1.13) 7.86 (1.12) 9.03 (0.30) 6.89 (0.55) 6.42 (0.33)

20 4.83 (0.26) 5.62 (0.30) 4.58 (0.39) 5.44 (0.24) 3.98 (0.21) 3.83 (0.22)
Winter 30 4.86 (0.29) 4.83 (0.27) 4.68 (0.38) 5.41 (0.25) 3.94 (0.17) 3.80 (0.21)

50 4.92 (0.38) 4.64 (0.63) 4.77 (0.52) 5.33 (0.18) 3.84 (0.21) 3.70 (0.20)

20 7.38 (0.17) 6.03 (0.65) 6.49 (0.49) 7.78 (0.14) 5.79 (0.16) 5.70 (0.16)
Year 30 7.41 (0.18) 6.21 (0.80) 6.57 (0.61) 7.76 (0.14) 5.72 (0.16) 5.66 (0.18)

50 7.47 (0.26) 6.56 (1.07) 6.87 (0.80) 7.73 (0.14) 5.69 (0.23) 5.61 (0.22)

Table 6.2: Precipitation: Mean and standard deviation of RMSE in cm for all sliding window
train/test splits.

First, we note that simply assigning equal weights to all ESMs does not exploit the
potential of ensemble methods. MMA presented the largest RMSE among the algorithms for
the majority of periods (summer, winter and year) and number of years for training.

Second, the multitask learning methods, p-MSSL and U-MSSL, clearly outperforms
the baseline methods for all the scenarios. It is worthy mentioning that S2M2R does not
always produce better projections than OLS. In fact it is slightly worse for year dataset. The
assumption of spatial neighborhood dependence does not seem to hold for many scenarios.

U-MSSL presented results similar or better than performing p-MSSL for precipita-
tion and temperature independently. It was able to reduce RMSE in the summer projections,
which has shown to be the most challenging scenario.

Figure 6.3 shows where the most significant RMSE reductions were obtained. The
Northwest part of South America includes Amazon rain-forest which experiences heavy rainfall
in summer (Dec/Jan/Feb). Substantial reduction is also found in the majority of Colombia and
Guyanas which are regions characterized by the largest measured rainfall in the world Lydolph
(1985).



111

Best-ESM OLS S2M2R MMA pMSSL U-MSSL
20 1.39 (0.23) 1.22 (0.10) 0.95 (0.13) 1.95 (0.02) 0.82 (0.08) 0.81 (0.01)

Summer 30 1.47 (0.30) 1.21 (0.15) 1.09 (0.17) 1.96 (0.01) 0.84 (0.07) 0.80 (0.01)
50 1.63 (0.35) 1.40 (0.19) 1.36 (0.20) 1.98 (0.01) 0.88 (0.05) 0.83 (0.01)

20 1.58 (0.19) 1.48 (0.08) 1.18 (0.12) 2.08 (0.01) 1.03 (0.04) 1.02 (0.03)
Winter 30 1.64 (0.26) 1.40 (0.13) 1.27 (0.16) 2.09 (0.01) 1.01 (0.04) 0.99 (0.03)

50 1.77 (0.31) 1.55 (0.17) 1.51 (0.18) 2.08 (0.01) 1.04 (0.02) 0.98 (0.03)

20 1.64 (0.18) 1.10 (0.13) 1.13 (0.12) 2.11 (0.01) 1.00 (0.04) 0.91 (0.02)
Year 30 1.70 (0.24) 1.20 (0.17) 1.24 (0.17) 2.12 (0.01) 1.00 (0.04) 0.91 (0.02)

50 1.83 (0.28) 1.47 (0.21) 1.50 (0.20) 2.12 (0.01) 1.01 (0.03) 0.91 (0.02)

Table 6.3: Temperature: Mean and standard deviation of RMSE in degree Celsius for all sliding
window train/test splits.

Figures 6.4 presents the geographical locations relationship identified by U-MSSL.
Each connection is the value of an entry in the precision matrix. The lack of connection
between two locations indicate that the corresponding entry in the precision matrix is zero.
The value associated with each connection can be interpreted in terms of partial correlation.
Then, ESMs weights of two connected locations are correlated, given the information of all other
geographical locations. From Figure 6.4a we observe that exclusive connections for temperature
ESMs weights are condensed in regions from central-west of Brazil, known for its hot and wet
climate through the year, to Northern part of Argentina. On the other hand, precipitation
exclusive connections are more sparse, prominently located at the Northernmost part of South
America, exactly in the area that U-MSSL presented better results than p-MSSL. Figure 6.4b
depicts those connections shared by both precipitation and temperature.

From Figures 6.4 we also note that the length of the connections for temperature are
more local than precipitation. It was somewhat expected, as temperature is spatially smoother
than precipitation. We also observed that the number of temperature connections was usually
twice the number of precipitation connections. This behavior was also observed in all the three
periods considered, summer, winter and year.

RMSE per geographical location for precipitation and temperature is presented in
Figures 6.5 and 6.6, respectively. For precipitation we note that more accurate projections
(lower RMSE) was obtained by U-MSSL, when compared to the baselines, in Northernmost
regions of South America, including Colombia and Venezuela. More accurate temperature
projections were obtained in central North region of South America. This region comprises
part of the Amazon rainforest.

6.7 Chapter Summary

We presented a multitask learning framework where each task is a multitask with
task dependence learning. A group lasso regularization is responsible for capturing similar
sparseness patterns across all precision matrices. By selecting specific values for the regular-
ization parameters, the proposed U-MSSL method degenerate to the MSSL formulation (See
Chapter 4).

Results on multiple climate variables projection showed that our proposal seems
promising as it produced lower or equal RMSE when compared to independent multitask learn-
ing methods for each climate variable separately. MTL-based methods, such as the one proposed
here, outperformed baseline methods for the problem.
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Figure 6.3: Difference of RMSE in summer precipitation obtained by p-MSSL and U-MSSL
algorithms. Larger values indicate that U-MSSL presented more accurate projections (lower
RMSE) than p-MSSL. We observe that U-MSSL produced projections similar or better than
p-MSSL for this scenario.
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(a) Mutually exclusive connections.
ESMs weights are correlated only in
one climate variable but not in the other.
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(b) Mutual connections.

Figure 6.4: [Best viewed in color] Connections identified by U-MSSL for each climate variable
in winter with 20 years of data for training. (a) Precipitation connections are show in blue
and temperature in red. (b) Connections found by both precipitation and temperature, that is,
ESMs weights of the connecting locations are correlated both in precipitation and temperature.

Our method can be applied to more climate variables. Theoretical results on multi-
task learning Maurer and Pontil (2013) have shown that MTL methods produce better results
as the number of tasks increase. Here, we have considered only two climate variables, temper-
ature and precipitation, as they are two of the most studied variables in the climate literature.
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Figure 6.5: Precipitation in summer: RMSE per geographical location for U-MSSL and three
other baselines. Twenty years of data were used for training the algorithms.

Even with the small set of variables, the experiments showed that our method is promising.
Next research steps include a wider analysis with a larger number of climate variables, such as
pressure at different heights and wind directions.

The proposed formulation can clearly be applied for domains other than climate.
We believe that an area in particular that may benefit from this formulation is multitask multi-
view learning Zhang and Shen (2012). Each view can be associated with a super-task, then
the joint learning will exploit commonalities among different views. For views with unequal
number of dimensions, one might consider modeling task dependencies in terms of the residuals,
as presented in Chapter 4, instead of the task parameters. It will only require equal number of
training samples for all sub-tasks.
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Figure 6.6: Temperature in summer: RMSE per geographical location for U-MSSL and three
other baselines. Twenty years of data were used for training the algorithms.
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Chapter 7
Conclusions and Future Directions

“ We can only see a short distance ahead, but we can see plenty there that
needs to be done. ”

Alan Turing

Learning multiple tasks simultaneously allows exploiting possible commonalities
among them, which may help to increase generalization capacity of individual models. That is
the main assertion in multitask learning (Caruana, 1993, 1997; Thrun and O’Sullivan, 1995).
Many research papers have shown, both theoretically and empirically, that a multitask learn-
ing model properly endowed with a shared representation, creating a way for information flow
among tasks, reduces the sample complexity of learning individual tasks.

Many of the existing multitask learning methods assume that all tasks are related,
and indiscriminately share information from and to all tasks, which may not be true in reality.
In fact, sharing information with unrelated tasks has been shown to be detrimental (Baxter,
2000). Others assume a (known) fixed task relatedness structure a priori. Information sharing
is then guided by such representation. Clearly, the main limitation is that this predefined
dependence structure may not hold and may misguide information sharing, thus degenerating
individual task performance. Additionally, in most real applications, not even a high level
understanding of the task relationships is available and, hence, we can start thinking of ways
to extract it from the data.

Black-box multitask models, characterized by the absence of an explicit task related-
ness representation, do not provide insights about a system under consideration. For example,
in the problem of Earth system models (ESMs) ensemble discussed in Chapters 4 and 6, climate
scientists are not only interested in better future predictions but mainly in understanding how
the ESM weights are spatially related, which may help to identify the so called teleconnections
(climate linkage) (Kawale et al., 2013). Therefore, interpretable models are preferred.

It is nowadays a common sense in the community that a fundamental step in mul-
titask learning is to correctly identify the true task relationship. The question that remains is
how to unveil the intricate task dependencies and how to embed such information into the joint
learning process. Those were the fundamental questions that this thesis aimed to answer.

Modeling a set of tasks from a hierarchical Bayesian model perspective allowed to
explicitly capture task relatedness by means of hyper-parameters of such models that encodes a
graph of dependencies. In such graphs, nodes are tasks and edges denotes dependence between
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the connected nodes. Compared to multitask learning methods with predefined relationship
among tasks, the family of methods proposed in this thesis has the additional cost of estimating
the mentioned graph of dependencies (structure learning problem). However, the results showed
that it pays off, as it has improved individual task performance for many problems from different
domains. Efficient methods for structure learning were used, for example, these methods can
estimate graphs on a scale of million nodes (Wang et al., 2013).

Personally speaking, multitask learning, as a tool, really improves generalization
capacity of individual models for problems of the form: multiple tasks with limited amount of
data available for training, relative to the complexity of the model. In the cases where a large
amount of training data is available, multitask learning and traditional single task learning
methods tend to have similar performances.

Due to the fact that the methods proposed in this thesis do not have strong as-
sumptions regarding the relationship among tasks, in fact it adapts to the problem structure,
we may infer that these methods can probably produce competitive results in a wider range of
problems.

7.1 Main Results and Contributions of this Thesis

The core contribution of this thesis lies on the explicitly estimation of task relation-
ships during the tasks joint learning process. The proposed methods have important practical
implications: one just needs to provide training data from all the tasks and without any guid-
ance on tasks dependence structure, the algorithm will figure out how tasks are related and use
it to provide a better estimate (in the sense of generalization capacity) of the sets of parameters
for the individual tasks. It works for sets of either classification or regression problems. The
structure is learned by considering a multivariate Gaussian or a more flexible semiparametric
Gaussian copula graphical model prior with unknown sparse precision (inverse covariance) ma-
trix. By solving the inference problem via maximum a posteriori estimation, the task relatedness
estimation naturally reduces to the structure learning problem for a Gaussian or semiparametric
Gaussian copula graphical model, for which efficient methods have been proposed recently.

Extensions of this formulation were developed to deal with multilabel classification
problems (Chapter 5) and ESM ensemble for multiple climate variables (Chapter 6), in which
each task is, in fact, a multitask learning problem. For the former, an Ising model is used to
capture the dependence among the single-label classifiers under the binary relevance problem
transformation setting. In the latter, two levels of information sharing is allowed: task parame-
ters and precision matrices. A group lasso penalty is imposed to constrain information sharing
among precision matrices. Table 7.1 presents the multitask learning methods proposed in this
thesis, highlighting their main characteristics regarding applicability and flexibility.

Multitask learning has been successfully applied in a wide spectrum of problems
ranging from object detection in computer vision to web image and video search (Wang et al.,
2009) to multiple micro-array data set integration in computational biology (Kim and Xing,
2010; Widmer and Rätsch, 2012), to name a few. In this thesis, we shed a multitask learning
light on the problems arising from the climate science domain, in particular the problem of
ESM ensemble, discussed in Chapter 4. To the best of our knowledge, this is the first work to
pose the ESM ensemble problem as a multitask learning problem. We have shown that climate
science can clearly benefit from the advances in multitask learning.

Additionally, we conducted an extensive number of numerical experiments on well
known classification datasets from diverse application domains, such as spam detection, hand-
writing/digits and face recognition to evaluate the performance of the methods proposed in this
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Method Problem Marginals Dependence

Classif. Regres. Gaussian non-Gaussian Linear Rank-based
p-MSSL
p-MSSLcop

r-MSSL
r-MSSLcop

I-MTSL ∗

U-MSSL

Table 7.1: Multitask learning methods developed in this thesis. (∗binary marginals)

thesis and compared to state-of-the-art multitask learning algorithms and traditional methods
for the problem. Results showed that our methods are competitive and, in many cases, outper-
form the contenders.

7.2 Future Perspectives

This thesis has contributed to both the development of a new class of flexible mul-
titask learning methods and to the climate science community with a set of powerful and more
interpretable tools. Future work are mainly motivated by other climate-related problems. Some
of these new challenges ask for a reformulation of the models proposed in this thesis, as will be
discussed in the following sections.

7.2.1 Time-varying Multitask Learning

Due to climate change, it is expected that the distributions of the ESMs projections
will change. So, using the same set of parameters Θ estimated from past data to perform
future climate projections implicitly implies a stationary assumption, which may not always
be true. For example, there are rather cyclic events like El-Niño-Southern Oscillation (ENSO)
that alternates between a warming phase, known as El Niño, and a cooling phase, known as La
Niña. It is possible that some ESMs are more efficient in capturing one phase than the other.
Therefore, ESMs importance – weights of the least square regression in our formulation – may
change in different periods of time.

As a consequence of changing on Θ, the precision matrix Ω will also change over time.
To track task dependence, we need to resort to temporal graphical models. A straightforward
approach would use hidden Markov models with a Gaussian graphical model in each state.
The model would select the most probable current state and consider the corresponding ESMs
weights in the ensemble. Likewise, copula models can also be used, with the advantage of
modeling nonlinear temporal dependence (Chen and Fan, 2006; Beare, 2010). Others such as
Granger graphical models (Lozano et al., 2009; Arnold et al., 2007) are also potential tools for
temporal dependence modeling.

7.2.2 Projections of the Extremes

In the context of ESMs ensemble, ordinary least square (OLS) regression provides
an estimate of the future mean value for a certain climate variable at a geographical location.
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For instance, it can be used to produce monthly average temperature for a given region of
interest, given the set of ESMs projections.

Mathematically speaking, in OLS regression, the conditional distribution of the re-
sponse variable given the set of explanatory variables is p(y|x) ∼ N (θ>x, σ2) and the forecast
is a point estimate of the mean of the conditional distribution p(y|θ), that is, ŷ = θ>x. How-
ever, in climate science researchers are also particularly interested in the extremes, as extreme
climate events, such as droughts and floods, have a drastic impact on society that might involve
life and economic losses. Therefore, researchers are interested in what is happening in the tails
of the distribution p(y|x).

An alternative is to consider the ESM ensemble with quantile regression (Koenker,
2005) that can produce projections on the median or any other quantile of the distribution.
We would then be able to obtain a set of weights for any quantile of interest τ ∈ (0, 1), so that
we can produce projections for any of these quantiles. Quantile regression allows to obtain an
entire characterization of the conditional distribution p(y|x) and not only its expected value,
as performed in OLS.

The extreme value theory (EVT) (Kotz and Nadarajah, 2000; Beirlant et al., 2006)
also provides potential tools for modeling rare events. EVT has been consistently and suc-
cessfully applied in climate science (Katz and Brown, 1992; Katz, 1999; Cheng et al., 2014),
particularly to model, investigate, and, hopefully, predict extreme climate events like floods,
droughts, heat waves, tornadoes, and hurricanes that may have a drastic impact for the living
beings. A straightforward application of EVT is the of use generalized extreme value distribu-
tions in the multitask learning framework proposed in this thesis. These heavy tail distributions
are more appropriate than traditional Gaussian distribution to model events that happens in
the tails of the distribution.

Given that the occurrence of extreme climate events are usually rare, they are more
difficult to predict due to lack of high-quality, long-term data. Multitask learning has the
potential to enhance these projections, as it has shown to help reducing the sample complexity.

7.2.3 Asymmetric Task Dependencies

The multitask learning methods presented in this thesis rely on undirected graphical
models. These graphical models are fairly rich to represent complex dependence structure.
However, it assumes mutual dependence between pairs of random variables, i.e., if a random
variable A depends on B, then B depends on A with the same strength. It may not hold in
many scenarios. For example, if we want to perform a climate variable projection based on
a set of other climate variables, it is likely that, given a pair of variables, one may affect the
other, but the opposite may not be true. That is, there is an unidirectional dependence among
these two variables.

To cope with such limitation, directed graphical models or even mixed graphical
models (contains both directed and undirected edges) should be used. These models bring two
main challenges: (i) structure learning in directed graphical models such as Bayesian networks
is difficult (Chickering, 1996); and (ii) in all our formulations, task relatedness is encoded
either in a precision matrix or the Ising model matrix, which in turn is embedded into the joint
learning formulation by means of a regularization term. As these matrices are symmetric, the
optimization problem is (bi-)convex and many efficient methods can be used. In the case of the
directed graphical model, such matrix would be non-symmetric and, therefore, the optimization
problem is no longer (bi-)convex.
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7.2.4 Risk Bounds

Theoretical investigation of the proposed methods will be the focus in the next steps
of the research. Excess risk bounds analysis, similar to what was done in Maurer and Pontil
(2013) is important to provide a quantitative measure of how much MSSL and its variants
improve single task learning with regard to characteristics of the problems, such as the number
of tasks, number of examples per task and properties of distributions underlying the training
data.

In the p-MSSL method discussed in Chapter 4, the amount of regularization of the
sparsity inducing term on the weight matrix Θ affects the recovery guarantees of the precision
matrix Ω. Increasing the sparseness on Θ pushes the entries of Θ matrix towards zero. As Ω is
estimated from the rows of Θ, it turns out to make the task of recovering Ω harder. Therefore,
it is essential to provide bounds on the regularization parameter, defining up to which level of
sparseness on Θ, Ω is still recoverable.

7.3 Publications

During the development of this PhD research at the Laboratory of Bioinformatics
and Bio-inspired Computing (LBiC) at UNICAMP and also at the Prof. Banerjee’s research
laboratory at University of Minnesota, Twin Cities, the papers presented as follows were pub-
lished. Many of them contain partial results of the research. The papers whose content are
directly related to this thesis are highlighted in bold face. The remaining papers were de-
veloped in collaboration with other researchers from UNICAMP and other universities and
research centers. Other results of this thesis, particularly the method proposed in chapter 6 are
being prepared for submission to a journal.
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